Exploring the Potential of Green Silver Nanoparticles from Berberis vulgaris against Bacterial Spot of Tomato and its Surveillance in Poonch District

Basharat Mehmood, Muhammad Abbas, Sajjad Hussain, Nasir Rahim, Saima Shafique, Rizwan T. Khan, Tahmina Zafar, Rafia M. Bhatti, Abu Bakar, Muhammad T. Younas, Syeda O. Javed, Shameen Arif


Bacterial spot of tomato is a major constraint to tomato production in tropical, subtropical, and temperate climates, leading to significant crop losses. The current study aimed to manage the highly devastating disease bacterial spot of tomato, caused by Xanthomonas perforans, using green silver nanoparticles based on Berberis vulgaris plant extract. Disease parameters, namely disease prevalence and disease incidence, were calculated from tomato growing areas of district Poonch, AJK, to document the current status of bacterial spot disease on local tomato cultivars. The associated pathogenic strains were purified, and virulence study was conducted on healthy tomato seedlings followed by characterization using morphological, biochemical, and molecular analysis. B. vulgaris plant extract was used for the preparation of green silver nanoparticles (AgNPs), and three different concentrations were prepared (0.2%, 0.4%, and 0.6%). For texture and molecular composition study, characterization of green AgNPs was done using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Green silver nanoparticles were then evaluated using the inhibition zone technique in the lab, and it was found that the maximum inhibition zone of 24.32 mm was observed at a 0.6% concentration. Similarly, in the greenhouse experiment, the minimum disease incidence was recorded in the treatment with a 0.6% concentration of green AgNPs. The results of the current study showed a significant reduction in disease incidence while using green silver nanoparticles against bacterial spot of tomato


AgNPs; Berberis vulgaris; Bacterial spot; Tomato


Abel, S., J. L. Tesfaye, N. Nagaprasad, R. Shanmugam, L. P. Dwarampudi and R. Krishnaraj. 2021. Synthesis and characterization of zinc oxide nanoparticles using moringa leaf extract. Journal of Nanomaterials, 2021: 4525770.

Abrahamian, P., A. Sharma, J. B. Jones and G. E. Vallad. 2021. Dynamics and spread of bacterial spot epidemics in tomato transplants grown for field production. Plant Disease, 105: 566-75.

Adhikari, P., T. B. Adhikari, F. J. Louws and D. R. Panthee. 2020. Advances and challenges in bacterial spot resistance breeding in tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences, 21: 1734.

Adhikari, P., T. B. Adhikari, S. Timilsina, I. Meadows, J. B. Jones, D. R. Panthee and F. J. Louws. 2019. Phenotypic and genetic diversity of Xanthomonas perforans populations from tomato in North Carolina. Phytopathology, 109: 1533-43.

Ahmad, B., R. Ahmed, S. Masroor, B. Mahmood, S. Z. U. Hasan, M. Jamil, M. T. Khan, M. T. Younas, A. Wahab and B. Haydar. 2023. Evaluation of smart greenhouse monitoring system using raspberry-Pi microcontroller for the production of tomato crop. Journal of Applied Research in Plant Sciences, 4: 452-58.

Ahmad, I. and M. Ahmad. 2022. Bacterial spot caused by Xanthomonas vesicatoria devastated tomato production of Khyber Pakhtunkhwa-Pakistan. International Journal of Phytopathology, 11: 77-95.

Aiello, D., G. Scuderi, A. Vitale, G. Firrao, G. Polizzi and G. Cirvilleri. 2013. A pith necrosis caused by Xanthomonas perforans on tomato plants. European journal of plant pathology, 137: 29-41.

Al-Samarrai, A. 2012. Nanoparticles as alternative to pesticides in management plant diseases-A review. International Journal of Scientific and Research Publications, 2: 1-4.

Anil Kumar, S., M. K. Abyaneh, S. Gosavi, S. K. Kulkarni, R. Pasricha, A. Ahmad and M. Khan. 2007. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology letters, 29: 439-45.

Awwad, A. M. and N. M. Salem. 2012. Green synthesis of silver nanoparticles by mulberry leaves extract. Nanoscience and Nanotechnology, 2: 125-28.

Babalola, D. and P. Agbola. 2008. Impact of malaria on poverty level: Evidence from rural farming households in Ogun State, Nigeria. Babcock Journal of Economics and Finance, 1: 108-18.

Bashan, Y., M. Azaizeh, S. Diab, H. Yunis and Y. Okon. 1985. Crop loss of pepper plants artificially infected with Xanthomonas campestris pv. vesicatoria in relation to symptom expression. Crop protection, 4: 77-84.

Bashir, A., M. T. Khan, R. Ahmed, B. Mehmood, M. T. Younas, H. M. Rehman and S. Hussain. 2020. Efficiency of selected botanicals against (Alternaria solani) causing early blight disease on tomato in Azad Jammu and Kashmir. Pakistan Journal of Phytopathology, 32: 179-86.

Beddoes, C. M., C. P. Case and W. H. Briscoe. 2015. Understanding nanoparticle cellular entry: A physicochemical perspective. Advances in colloid and interface science, 218: 48-68.

Bhattacharya, D. and R. K. Gupta. 2005. Nanotechnology and potential of microorganisms. Critical reviews in biotechnology, 25: 199-204.

Bhattacharyya, A., P. Duraisamy, M. Govindarajan, A. A. Buhroo and R. Prasad. 2016. Nano-biofungicides: Emerging trend in insect pest control. In, Advances and applications through fungal nanobiotechnology. Springer International Publishing. Switzerland.

Burlakoti, R. R., C.-f. Hsu, J.-r. Chen and J.-f. Wang. 2018. Population dynamics of xanthomonads associated with bacterial spot of tomato and pepper during 27 years across Taiwan. Plant Disease, 102: 1348-56.

Daphedar, A. and T. C. Taranath. 2018. Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt. & McCann) Stearn. Toxicology Reports, 5: 910-18.

Elbeshehy, E. K., A. M. Elazzazy and G. Aggelis. 2015. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in microbiology, 6: 453-62.

FAO. 2021. World Food and Agriculture-Statistical Yearbook 2021. Food and Agriculture Organization. Rome, Italy.

Fernández‐Bedmar, Z., J. Anter and A. Alonso Moraga. 2018. Anti/genotoxic, longevity inductive, cytotoxic, and clastogenic‐related bioactivities of tomato and lycopene. Environmental and molecular mutagenesis, 59: 427-37.

Fraceto, L. F., R. Grillo, G. A. de Medeiros, V. Scognamiglio, G. Rea and C. Bartolucci. 2016. Nanotechnology in agriculture: which innovation potential does it have? Frontiers in Environmental Science: 20.

Gebremedhn, K., M. H. Kahsay and M. Aklilu. 2019. Green synthesis of CuO nanoparticles using leaf extract of Catha edulis and its antibacterial activity. Journal of Pharmacy and Pharmacology, 7: 327-42.

Horvath, D. M., R. E. Stall, J. B. Jones, M. H. Pauly, G. E. Vallad, D. Dahlbeck, B. J. Staskawicz and J. W. Scott. 2012. Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS One, 7: e42036.

Jamdagni, P., J. Rana and P. Khatri. 2018. Comparative study of antifungal effect of green and chemically synthesised silver nanoparticles in combination with carbendazim, mancozeb, and thiram. IET nanobiotechnology, 12: 1102-07.

Javed, B., N. I. Raja, A. Nadhman and Z.-u.-R. Mashwani. 2020. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens. Applied Nanoscience, 10: 2057-67.

Jones, J. B., G. H. Lacy, H. Bouzar, R. E. Stall and N. W. Schaad. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and applied microbiology, 27: 755-62.

Jones, J. B. and S. A. Miller. 2014. Bacterial Leaf Spot. In: J. B. Jones, T. A. Zitter, M. T. Momol and S. A. Miller (eds.), Compendium of Tomato Diseases and Pests. APS Press. St. Paul, USA.

Kavitha, R. and S. Umesha. 2007. Prevalence of bacterial spot in tomato fields of Karnataka and effect of biological seed treatment on disease incidence. Crop protection, 26: 991-97.

Kebede, M., S. Timilsina, A. Ayalew, B. Admassu, N. Potnis, G. V. Minsavage, E. M. Goss, J. C. Hong, A. Strayer and M. Paret. 2014. Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. European journal of plant pathology, 140: 677-88.

Khan, M. R. and T. F. Rizvi. 2014. Nanotechnology: Scope and application in plant disease management. Plant Pathology Journal, 13: 214-31.

Klaus-Joerger, T., R. Joerger, E. Olsson and C.-G. Granqvist. 2001. Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. TRENDS in Biotechnology, 19: 15-20.

Koenraadt, H., B. Van Betteray, R. Germain, G. Hiddink, J. Jones and J. Oosterhof. 2007. Development of specific primers for the molecular detection of bacterial spot of pepper and tomato. Acta Horticulturae, 808: 99-102.

Manik, U., A. Nande, S. Raut and S. Dhoble. 2020. Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results in Materials, 6: 100086.

Mohammadi, A., M. Hashemi and S. M. Hosseini. 2016. Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria. LWT-Food Science and Technology, 71: 347-55.

Moradian, F., R. Ghorbani and P. Biparva. 2018. Assessment of different antibacterial effects of Fe and cu nanoparticles on Xanthomonas campestris growth and expression of its pathogenic gene hrpE. Journal of Agricultural Science and Technology, 20: 1059-70.

Nicosia, A., F. Vento, A. L. Pellegrino, V. Ranc, A. Piperno, A. Mazzaglia and P. Mineo. 2020. Polymer-based graphene derivatives and microwave-assisted silver nanoparticles decoration as a potential antibacterial agent. Nanomaterials, 10: 2269.

Nuruzzaman, M., M. M. Rahman, Y. Liu and R. Naidu. 2016. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64: 1447-83.

Ocsoy, I., M. L. Paret, M. A. Ocsoy, S. Kunwar, T. Chen, M. You and W. Tan. 2013. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS nano, 7: 8972-80.

Perveen, R., H. A. R. Suleria, F. M. Anjum, M. S. Butt, I. Pasha and S. Ahmad. 2015. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims—A comprehensive review. Critical Reviews in Food Science and Nutrition, 55: 919-29.

Prasad, R., A. Bhattacharyya and Q. D. Nguyen. 2017. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in microbiology, 8: 1014.

Roach, R., R. Mann, C. Gambley, R. G. Shivas and B. Rodoni. 2018. Identification of Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli crops in eastern Australia. European journal of plant pathology, 150: 595-608.

Sambalova, O., K. Thorwarth, N. V. Heeb, D. Bleiner, Y. Zhang, A. Borgschulte and A. Kroll. 2018. Carboxylate functional groups mediate interaction with silver nanoparticles in biofilm matrix. Acs Omega, 3: 724-33.

Scortichini, M., E. Stefani, J. Elphinstone and M. Bergsma Vlami. 2013. PM 7/110 (1) Xanthomonas spp.(Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. BULLETIN OEPP, 43: 7-20.

Ssekatawa, K., D. K. Byarugaba, C. D. Kato, E. M. Wampande, F. Ejobi, J. L. Nakavuma, M. Maaza, J. Sackey, E. Nxumalo and J. B. Kirabira. 2021. Green strategy–based synthesis of silver nanoparticles for antibacterial applications. Frontiers in Nanotechnology, 3: 697303.

Stall, R. E., J. B. Jones and G. V. Minsavage. 2009. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annual Review of Phytopathology, 47: 265-84.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30: 2725-29.

Timilsina, S., M. O. Jibrin, N. Potnis, G. V. Minsavage, M. Kebede, A. Schwartz, R. Bart, B. Staskawicz, C. Boyer and G. E. Vallad. 2015. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Applied and environmental microbiology, 81: 1520-29.

Varympopi, A., A. Dimopoulou, D. Papafotis, P. Avramidis, I. Sarris, T. Karamanidou, A. K. Kerou, A. Vlachou, E. Vellis and A. Giannopoulos. 2022. Antibacterial activity of copper nanoparticles against Xanthomonas campestris pv. vesicatoria in tomato plants. International Journal of Molecular Sciences, 23: 4080.

Vicente, J. and S. Roberts. 2003. Screening wild cherry micropropagated plantlets for resistance to bacterial canker. Pseudomonas syringae and related pathogens: Biology and genetic.

Vivek, M., P. S. Kumar, S. Steffi and S. Sudha. 2011. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna Journal of Medical Biotechnology, 3: 143-52.

Yusof, K. N., S. S. Alias, Z. Harun, H. Basri and F. H. Azhar. 2018. Parkia speciosa as reduction agent in green synthesis silver nanoparticles. ChemistrySelect, 3: 8881-85.

Full Text: PDF

DOI: 10.33687/phytopath.012.01.4589


  • There are currently no refbacks.

Copyright (c) 2023 Basharat Mehmood

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.