Some Volatile Metabolites Produced by the Antifungal-Trichoderma Asperellum UZ-A4 Micromycete
Abstract
The fungus of the genus Trichoderma is characterized by high biological activity and the ability to synthesize many compounds of great scientific interest. Among them, producers of amino acids, nucleic and organic acids, vitamins, surface-active substances, numerous hydrolases, various antibiotics and other substances were revealed. In this work there were studied volatile organic compounds produced by the fungus Trichoderma asperellum Uz-A4, isolated from the soil of the cotton field of the Bukhara region of Uzbekistan infected with phytopathogens. The antagonistic activity of the fungus about phytopathogens Alternaria alternata, Aspergillus niger and Fusarium solani was evaluated. Trichoderma asperellum Uz-A4 micromyzet showed high activity on the 4 th day against Alternaria alternata and Fusarium solani about Aspergillus niger on the 9th day. From the culture fluid of the fungus Trichoderma asperellum Uz-A4, 11 main substances have been isolated and identified. Mass - spectrometric analysis has shown that these are the substances of Phenylethylcohol; 5-hydroxymethylfurfural; Dehydroa Ceticacid; 1-Dodecanol; 2,4-di-tert-Butylphenol; Diethyl Suberate; n-hexadecanoic acid; 1-hexadecanol, 2-methyl; Phthalic Acid, Ethyl Pentadecyl Ester; Mono (2-Thylhexyl) Phthalate; Octadecanoic Acid. A chemical formula, molecular weight and the absorption spectrum of these substances have been determined. The results indicated that these secondary metabolites could be useful for biological control applications of T. asperellum Uz-A4 strain against diverse plant pathogens.
Keywords
References
Ali, A. M. 2021. The Competitive potential of different Trichoderma spp. to control Rhizoctonia root rot disease of pepper (Capsicum annuum L.). Egyptian Journal of Phytopathology, 49: 136-50. https://doi.org/10.21608/ejp.2021.73456.1030
Andriamialisoa, Z., M. Giraud, R. Labia and A. Valla. 2004. Chemical synthesis of 6-pentyl-2 H-pyran-2-one: a natural antifungal biosynthesized by Trichoderma spp. Chemistry and Ecology, 20: 55-59. https://doi.org/10.1080/02757540310001642670
Arnold, K., L. Marko and K. Kersti. 2011. Extraction of genomic DNA from yeasts for PCR-based application Articlein Bio Techniques. pp. 325-28. https://doi.org/10.2144/000113672
Atanasova, L., S. L. Crom, S. Gruber, F. Coulpier, V. Seidl-Seiboth, C. P. Kubicek and I. S. Druzhinina. 2013. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC genomics, 14: 1-15. https://doi.org/10.1186/1471-2164-14-121
Bahaa, T. S., M. Nagah, M. A. Ghareeb, G. M. El-Sherbiny, S. A. Moghannem and M. S. Abdel-Aziz. 2019. Evaluation of antioxidants, total phenolics and antimicrobial activities of ethyl acetate extracts from Fungi grown on rice straw. Journal of Renewable Materials, 7: 662-77. https://doi.org/10.32604/jrm.2019.04524
Benítez, T., A. M. Rincón, M. C. Limón and A. C. Codon. 2004. Biocontrol mechanisms of Trichoderma strains. International microbiology, 7: 249-60.
Chen, Y. and G. Dai. 2015. Acaricidal, repellent, and oviposition-deterrent activities of 2, 4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. Journal of Pest Science, 88: 645-55. https://doi.org/10.1007/s10340-015-0646-2
Chiang, Y.-M., K.-H. Lee, J. F. Sanchez, N. P. Keller and C. C. Wang. 2009. Unlocking fungal cryptic natural products. Natural product communications, 4: 1505-10. https://doi.org/10.1177/1934578X0900401113
Contreras-Cornejo, H. A., L. Macías-Rodríguez, E. Del-Val and J. Larsen. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS microbiology ecology, 92: fiw036. https://doi.org/10.1093/femsec/fiw036
Daoubi, M., C. Pinedo-Rivilla, M. B. Rubio, R. Hermosa, E. Monte, J. Aleu and I. G. Collado. 2009. Hemisynthesis and absolute configuration of novel 6-pentyl-2H-pyran-2-one derivatives from Trichoderma spp. Tetrahedron, 65: 4834-40. https://doi.org/10.1016/j.tet.2009.04.051
Golder, W. S. and T. R. Watson. 1980. Lanosterol derivatives as precursors in the biosynthesis of viridin. Part 1. Journal of the Chemical Society, Perkin Transactions, 1: 422-25. https://doi.org/10.1039/p19800000422
Guarrasi, V., C. Sannino, M. Moschetti, A. Bonanno, A. Di Grigoli and L. Settanni. 2017. The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo palermitano cheese. International journal of food microbiology, 259: 35-42. https://doi.org/10.1016/j.ijfoodmicro.2017.07.022
Harman, G. E. 1996. Trichoderma for biocontrol of plant pathogens: From basic research to commercialized products. Proceedings of the Cornell Community Conference on Biological Control, Ithaca, NY.
Herbert, B. 1989. Biosynthesis of Secondary MetabolitesChapman and Hall. London. https://doi.org/10.1007/978-94-010-9132-9
Holzlechner, M., S. Reitschmidt, S. Gruber, S. Zeilinger-Migsich and M. Marchetti-Deschmann. 2017. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging. Proteomics, 16: 1742-46. https://doi.org/10.1002/pmic.201500510
Intana, W., S. Kheawleng and A. Sunpapao. 2021. Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum. Journal of Fungi, 7: 46. https://doi.org/10.3390/jof7010046
Kaushik, N., C. E. Díaz, H. Chhipa, L. F. Julio, M. F. Andrés and A. González-Coloma. 2020. Chemical composition of an aphid antifeedant extract from an endophytic fungus, Trichoderma sp. EFI671. Microorganisms, 8: 420. https://doi.org/10.3390/microorganisms8030420
Keller, N. P., G. Turner and J. W. Bennett. 2005. Fungal secondary metabolism from biochemistry to genomics. Nature reviews microbiology, 3: 937-47. https://doi.org/10.1038/nrmicro1286
Khan, R. A. A., S. Najeeb, S. Hussain, B. Xie and Y. Li. 2020. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8: 817. https://doi.org/10.3390/microorganisms8060817
Mandels, M., F. W. Parrish and E. T. Reese. 1962. Sophorose as an inducer of cellulase in Trichoderma viride. Journal of Bacteriology, 83: 400-08. https://doi.org/10.1128/jb.83.2.400-408.1962
Mao, T., X. Chen, H. Ding, X. Chen and X. Jiang. 2020. Pepper growth promotion and Fusarium wilt biocontrol by Trichoderma hamatum MHT1134. Biocontrol Science and Technology, 30: 1228-43. https://doi.org/10.1080/09583157.2020.1803212
Ming, Q., T. Han, W. Li, Q. Zhang, H. Zhang, C. Zheng, F. Huang, K. Rahman and L. Qin. 2012. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine, 19: 330-33. https://doi.org/10.1016/j.phymed.2011.09.076
Müller, A., P. Faubert, M. Hagen, W. Zu Castell, A. Polle, J.-P. Schnitzler and M. Rosenkranz. 2013. Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal genetics and biology, 54: 25-33. https://doi.org/10.1016/j.fgb.2013.02.005
Park, M. S., G. S. Seo, K. H. Lee, K. S. Bae and S. H. Yu. 2005. Morphological and cultural characteristics of Trichoderma spp. associated with green mold of oyster mushroom in Korea. The Plant Pathology Journal, 21: 221-28. https://doi.org/10.5423/PPJ.2005.21.3.221
Reino, J. L., R. F. Guerrero, R. Hernández-Galán and I. G. Collado. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7: 89-123. https://doi.org/10.1007/s11101-006-9032-2
Reithner, B., R. Schuhmacher, N. Stoppacher, M. Pucher, K. Brunner and S. Zeilinger. 2007. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal genetics and biology, 44: 1123-33. https://doi.org/10.1016/j.fgb.2007.04.001
Saravanakumar, K., R. Chelliah, S. R. Ramakrishnan, K. Kathiresan, D.-H. Oh and M.-H. Wang. 2018. Antibacterial, and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microbial pathogenesis, 115: 338-42. https://doi.org/10.1016/j.micpath.2017.12.081
Shaikh, M. N. and D. N. Mokat. 2017. Bioactive metabolites of rhizosphere fungi associated with Cymbopogon citratus (DC.) Stapf. Journal of Pharmacognosy and Phytochemistry, 6: 2289-93.
Shobha, B., T. R. Lakshmeesha, M. A. Ansari, A. Almatroudi, M. A. Alzohairy, S. Basavaraju, R. Alurappa, S. R. Niranjana and S. Chowdappa. 2020. Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. oryzae. Journal of Fungi, 6: 181. https://doi.org/10.3390/jof6030181
Singh, S., P. Dureja, R. Tanwar and A. Singh. 2005. Production and antifungal activity of secondary metabolites of Trichoderma virens. Pesticide Research Journal, 17: 26-29.
Sivasithamparam, K. and E. Ghisalberti. 1998. Secondary metabolism in Trichoderma and Gliocladium. In, Trichoderma and Gliocladium. Francis and Taylor Ltd. London.
Stracquadanio, C., J. M. Quiles, G. Meca and S. O. Cacciola. 2020. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. Journal of Fungi, 6: 263. https://doi.org/10.3390/jof6040263
Sunpapao, A., T. Chairin and S.-i. Ito. 2018. The biocontrol by Streptomyces and Trichoderma of leaf spot disease caused by Curvularia oryzae in oil palm seedlings. Biological Control, 123: 36-42. https://doi.org/10.1016/j.biocontrol.2018.04.017
Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution, 24: 1596-99. https://doi.org/10.1093/molbev/msm092
Ubalua, A. and E. Oti. 2007. Antagonistic properties of Trichoderma viride on post harvest cassava root rot pathogens. African Journal of Biotechnology, 6: 2447-50. https://doi.org/10.5897/AJB2007.000-2387
Velázquez-Robledo, R., H. Contreras-Cornejo, L. Macias-Rodriguez, A. Hernández-Morales, J. Aguirre, S. Casas-Flores, J. López-Bucio and A. Herrera-Estrella. 2011. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Molecular plant-microbe interactions, 24: 1459-71. https://doi.org/10.1094/MPMI-02-11-0045
Vinale, F., K. Sivasithamparam, E. Ghisalberti, R. Marra, M. Barbetti, H. Li, S. Woo and M. Lorito. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72: 80-86. https://doi.org/10.1016/j.pmpp.2008.05.005
Weber, R. W., R. Kappe, T. Paululat, E. Mösker and H. Anke. 2007. Anti-candida metabolites from endophytic fungi. Phytochemistry, 68: 886-92. https://doi.org/10.1016/j.phytochem.2006.12.017
Weindling, R. and O. Emerson. 1936. The isolation of a toxic substance from the culture filtrates of Trichoderma. Phytopathology, 26: 1068-70.
White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In, PCR protocols: a guide to methods and applications. Academic Press. San Diego, California. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wonglom, P., W. Daengsuwan, S.-i. Ito and A. Sunpapao. 2019. Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved. Physiological and Molecular Plant Pathology, 107: 1-7. https://doi.org/10.1016/j.pmpp.2019.04.007
Yang, L., R. Song, X. Deng and C. Li. 2013. Active components of extracts from the fermentation liquid of Trichoderma harzianum strain T28 and their inhibiting activities to Phytophthora infestans. Scientia Silvae Sinicae, 49: 118-22.
Zhao, F., P. Wang, R. D. Lucardi, Z. Su and S. Li. 2020. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins, 12: 35. https://doi.org/10.3390/toxins12010035
Zhu, F., C. Qin, L. Tao, X. Liu, Z. Shi, X. Ma, J. Jia, Y. Tan, C. Cui and J. Lin. 2011. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. proceedings of the national academy of sciences, 108: 12943-48. https://doi.org/10.1073/pnas.1107336108
DOI: 10.33687/phytopath.011.03.4263
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 jaloliddin Shavkiev
This work is licensed under a Creative Commons Attribution 4.0 International License.