Some Volatile Metabolites Produced by the Antifungal-Trichoderma Asperellum UZ-A4 Micromycete

Jaloliddin Shavkiev, Karimov H. Kholmamatovich, Turaeva B. Ismoilovna, Azimova N. S. kizi, Nazirbekov M. Khodjakbarovich, Khamidova K. Muminovna

Abstract


The fungus of the genus Trichoderma is characterized by high biological activity and the ability to synthesize many compounds of great scientific interest. Among them, producers of amino acids, nucleic and organic acids, vitamins, surface-active substances, numerous hydrolases, various antibiotics and other substances were revealed. In this work there were studied volatile organic compounds produced by the fungus Trichoderma asperellum Uz-A4, isolated from the soil of the cotton field of the Bukhara region of Uzbekistan infected with phytopathogens. The antagonistic activity of the fungus about phytopathogens Alternaria alternata, Aspergillus niger and Fusarium solani was evaluated. Trichoderma asperellum Uz-A4 micromyzet showed high activity on the 4 th day against Alternaria alternata and Fusarium solani about Aspergillus niger on the 9th day. From the culture fluid of the fungus Trichoderma asperellum Uz-A4, 11 main substances have been isolated and identified. Mass - spectrometric analysis has shown that these are the substances of Phenylethylcohol; 5-hydroxymethylfurfural; Dehydroa Ceticacid; 1-Dodecanol; 2,4-di-tert-Butylphenol; Diethyl Suberate; n-hexadecanoic acid; 1-hexadecanol, 2-methyl; Phthalic Acid, Ethyl Pentadecyl Ester; Mono (2-Thylhexyl) Phthalate; Octadecanoic Acid. A chemical formula, molecular weight and the absorption spectrum of these substances have been determined. The results indicated that these secondary metabolites could be useful for biological control applications of T. asperellum Uz-A4 strain against diverse plant pathogens.


Keywords


Antagonist; Microorganism; Secondary metabolite; Trichoderma

References


Ali, A. M. 2021. The Competitive potential of different Trichoderma spp. to control Rhizoctonia root rot disease of pepper (Capsicum annuum L.). Egyptian Journal of Phytopathology, 49: 136-50. https://doi.org/10.21608/ejp.2021.73456.1030

Andriamialisoa, Z., M. Giraud, R. Labia and A. Valla. 2004. Chemical synthesis of 6-pentyl-2 H-pyran-2-one: a natural antifungal biosynthesized by Trichoderma spp. Chemistry and Ecology, 20: 55-59. https://doi.org/10.1080/02757540310001642670

Arnold, K., L. Marko and K. Kersti. 2011. Extraction of genomic DNA from yeasts for PCR-based application Articlein Bio Techniques. pp. 325-28. https://doi.org/10.2144/000113672

Atanasova, L., S. L. Crom, S. Gruber, F. Coulpier, V. Seidl-Seiboth, C. P. Kubicek and I. S. Druzhinina. 2013. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC genomics, 14: 1-15. https://doi.org/10.1186/1471-2164-14-121

Bahaa, T. S., M. Nagah, M. A. Ghareeb, G. M. El-Sherbiny, S. A. Moghannem and M. S. Abdel-Aziz. 2019. Evaluation of antioxidants, total phenolics and antimicrobial activities of ethyl acetate extracts from Fungi grown on rice straw. Journal of Renewable Materials, 7: 662-77. https://doi.org/10.32604/jrm.2019.04524

Benítez, T., A. M. Rincón, M. C. Limón and A. C. Codon. 2004. Biocontrol mechanisms of Trichoderma strains. International microbiology, 7: 249-60.

Chen, Y. and G. Dai. 2015. Acaricidal, repellent, and oviposition-deterrent activities of 2, 4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. Journal of Pest Science, 88: 645-55. https://doi.org/10.1007/s10340-015-0646-2

Chiang, Y.-M., K.-H. Lee, J. F. Sanchez, N. P. Keller and C. C. Wang. 2009. Unlocking fungal cryptic natural products. Natural product communications, 4: 1505-10. https://doi.org/10.1177/1934578X0900401113

Contreras-Cornejo, H. A., L. Macías-Rodríguez, E. Del-Val and J. Larsen. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS microbiology ecology, 92: fiw036. https://doi.org/10.1093/femsec/fiw036

Daoubi, M., C. Pinedo-Rivilla, M. B. Rubio, R. Hermosa, E. Monte, J. Aleu and I. G. Collado. 2009. Hemisynthesis and absolute configuration of novel 6-pentyl-2H-pyran-2-one derivatives from Trichoderma spp. Tetrahedron, 65: 4834-40. https://doi.org/10.1016/j.tet.2009.04.051

Golder, W. S. and T. R. Watson. 1980. Lanosterol derivatives as precursors in the biosynthesis of viridin. Part 1. Journal of the Chemical Society, Perkin Transactions, 1: 422-25. https://doi.org/10.1039/p19800000422

Guarrasi, V., C. Sannino, M. Moschetti, A. Bonanno, A. Di Grigoli and L. Settanni. 2017. The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo palermitano cheese. International journal of food microbiology, 259: 35-42. https://doi.org/10.1016/j.ijfoodmicro.2017.07.022

Harman, G. E. 1996. Trichoderma for biocontrol of plant pathogens: From basic research to commercialized products. Proceedings of the Cornell Community Conference on Biological Control, Ithaca, NY.

Herbert, B. 1989. Biosynthesis of Secondary MetabolitesChapman and Hall. London. https://doi.org/10.1007/978-94-010-9132-9

Holzlechner, M., S. Reitschmidt, S. Gruber, S. Zeilinger-Migsich and M. Marchetti-Deschmann. 2017. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging. Proteomics, 16: 1742-46. https://doi.org/10.1002/pmic.201500510

Intana, W., S. Kheawleng and A. Sunpapao. 2021. Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum. Journal of Fungi, 7: 46. https://doi.org/10.3390/jof7010046

Kaushik, N., C. E. Díaz, H. Chhipa, L. F. Julio, M. F. Andrés and A. González-Coloma. 2020. Chemical composition of an aphid antifeedant extract from an endophytic fungus, Trichoderma sp. EFI671. Microorganisms, 8: 420. https://doi.org/10.3390/microorganisms8030420

Keller, N. P., G. Turner and J. W. Bennett. 2005. Fungal secondary metabolism from biochemistry to genomics. Nature reviews microbiology, 3: 937-47. https://doi.org/10.1038/nrmicro1286

Khan, R. A. A., S. Najeeb, S. Hussain, B. Xie and Y. Li. 2020. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8: 817. https://doi.org/10.3390/microorganisms8060817

Mandels, M., F. W. Parrish and E. T. Reese. 1962. Sophorose as an inducer of cellulase in Trichoderma viride. Journal of Bacteriology, 83: 400-08. https://doi.org/10.1128/jb.83.2.400-408.1962

Mao, T., X. Chen, H. Ding, X. Chen and X. Jiang. 2020. Pepper growth promotion and Fusarium wilt biocontrol by Trichoderma hamatum MHT1134. Biocontrol Science and Technology, 30: 1228-43. https://doi.org/10.1080/09583157.2020.1803212

Ming, Q., T. Han, W. Li, Q. Zhang, H. Zhang, C. Zheng, F. Huang, K. Rahman and L. Qin. 2012. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine, 19: 330-33. https://doi.org/10.1016/j.phymed.2011.09.076

Müller, A., P. Faubert, M. Hagen, W. Zu Castell, A. Polle, J.-P. Schnitzler and M. Rosenkranz. 2013. Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal genetics and biology, 54: 25-33. https://doi.org/10.1016/j.fgb.2013.02.005

Park, M. S., G. S. Seo, K. H. Lee, K. S. Bae and S. H. Yu. 2005. Morphological and cultural characteristics of Trichoderma spp. associated with green mold of oyster mushroom in Korea. The Plant Pathology Journal, 21: 221-28. https://doi.org/10.5423/PPJ.2005.21.3.221

Reino, J. L., R. F. Guerrero, R. Hernández-Galán and I. G. Collado. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7: 89-123. https://doi.org/10.1007/s11101-006-9032-2

Reithner, B., R. Schuhmacher, N. Stoppacher, M. Pucher, K. Brunner and S. Zeilinger. 2007. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal genetics and biology, 44: 1123-33. https://doi.org/10.1016/j.fgb.2007.04.001

Saravanakumar, K., R. Chelliah, S. R. Ramakrishnan, K. Kathiresan, D.-H. Oh and M.-H. Wang. 2018. Antibacterial, and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microbial pathogenesis, 115: 338-42. https://doi.org/10.1016/j.micpath.2017.12.081

Shaikh, M. N. and D. N. Mokat. 2017. Bioactive metabolites of rhizosphere fungi associated with Cymbopogon citratus (DC.) Stapf. Journal of Pharmacognosy and Phytochemistry, 6: 2289-93.

Shobha, B., T. R. Lakshmeesha, M. A. Ansari, A. Almatroudi, M. A. Alzohairy, S. Basavaraju, R. Alurappa, S. R. Niranjana and S. Chowdappa. 2020. Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. oryzae. Journal of Fungi, 6: 181. https://doi.org/10.3390/jof6030181

Singh, S., P. Dureja, R. Tanwar and A. Singh. 2005. Production and antifungal activity of secondary metabolites of Trichoderma virens. Pesticide Research Journal, 17: 26-29.

Sivasithamparam, K. and E. Ghisalberti. 1998. Secondary metabolism in Trichoderma and Gliocladium. In, Trichoderma and Gliocladium. Francis and Taylor Ltd. London.

Stracquadanio, C., J. M. Quiles, G. Meca and S. O. Cacciola. 2020. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. Journal of Fungi, 6: 263. https://doi.org/10.3390/jof6040263

Sunpapao, A., T. Chairin and S.-i. Ito. 2018. The biocontrol by Streptomyces and Trichoderma of leaf spot disease caused by Curvularia oryzae in oil palm seedlings. Biological Control, 123: 36-42. https://doi.org/10.1016/j.biocontrol.2018.04.017

Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution, 24: 1596-99. https://doi.org/10.1093/molbev/msm092

Ubalua, A. and E. Oti. 2007. Antagonistic properties of Trichoderma viride on post harvest cassava root rot pathogens. African Journal of Biotechnology, 6: 2447-50. https://doi.org/10.5897/AJB2007.000-2387

Velázquez-Robledo, R., H. Contreras-Cornejo, L. Macias-Rodriguez, A. Hernández-Morales, J. Aguirre, S. Casas-Flores, J. López-Bucio and A. Herrera-Estrella. 2011. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Molecular plant-microbe interactions, 24: 1459-71. https://doi.org/10.1094/MPMI-02-11-0045

Vinale, F., K. Sivasithamparam, E. Ghisalberti, R. Marra, M. Barbetti, H. Li, S. Woo and M. Lorito. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72: 80-86. https://doi.org/10.1016/j.pmpp.2008.05.005

Weber, R. W., R. Kappe, T. Paululat, E. Mösker and H. Anke. 2007. Anti-candida metabolites from endophytic fungi. Phytochemistry, 68: 886-92. https://doi.org/10.1016/j.phytochem.2006.12.017

Weindling, R. and O. Emerson. 1936. The isolation of a toxic substance from the culture filtrates of Trichoderma. Phytopathology, 26: 1068-70.

White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In, PCR protocols: a guide to methods and applications. Academic Press. San Diego, California. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wonglom, P., W. Daengsuwan, S.-i. Ito and A. Sunpapao. 2019. Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved. Physiological and Molecular Plant Pathology, 107: 1-7. https://doi.org/10.1016/j.pmpp.2019.04.007

Yang, L., R. Song, X. Deng and C. Li. 2013. Active components of extracts from the fermentation liquid of Trichoderma harzianum strain T28 and their inhibiting activities to Phytophthora infestans. Scientia Silvae Sinicae, 49: 118-22.

Zhao, F., P. Wang, R. D. Lucardi, Z. Su and S. Li. 2020. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins, 12: 35. https://doi.org/10.3390/toxins12010035

Zhu, F., C. Qin, L. Tao, X. Liu, Z. Shi, X. Ma, J. Jia, Y. Tan, C. Cui and J. Lin. 2011. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. proceedings of the national academy of sciences, 108: 12943-48. https://doi.org/10.1073/pnas.1107336108


Full Text: PDF

DOI: 10.33687/phytopath.011.03.4263

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 jaloliddin Shavkiev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.