Characterization of Pseudomonas syringae pv. syringae from Diseased Stone Fruits in Kyrgyzstan and Testing of Biological Agents against Pathogen
Abstract
The plant diseases caused by the Pseudomonas syringae сomplex bacteria are economically important and occur worldwide on various plants, and it is as a pathogen that has not been the object of studies and little is known about its epidemiology in Kyrgyzstan. The conventional phenotypic (LOPAT, API tests) and PCR-assisted isolation were used for the identificationof Pseudomonas syringae pv. syringaе isolates from the affected organs of local stone fruits, such as peach (Prunus persica), cherry (Prunus subgen), apricot (Prunus armeniaca), and plum (Prunus salicina) samples taken from the Chy, Issuk-Kul, and Batken regions of the country. 16S rRNA gene amplification was performed with primers 27F (5'-AGA GTT TGA TCC TGG CTC AG -3') and 907R (5 '–CCG TCA ATT CCT TTG AGT TT-3') for the identification of obtained P.syringae pv. syringaе isolates. From 40 primary isolates of Gram-negative rod-shaped bacteria, 12 were identified as Pseudomonas syringae pv. syringae, while the remaining isolates were identified as bacteria from Stenotrophomonas, Xanthomonas, Erwinia genera. The antagonist bio control agent—Streptomyces bacteria strains were screened and selected against the bacterial canker pathogen in in vitro experiments and on apricot seedlings in vivo conditions. Obtained results could encourage to develop a local bio-product based on this bioagent for spraying stone fruits with the initial manifestation of disease symptoms and to conduct preventive treatments in the fall and spring to increase the plant's resistance to pathogens.
Keywords
References
Agrios, G. N. 2005. Plant Pathology. Elsevier Academic Press: Burlington, Ma. USA.
Ahmed, R., M. Inam-ul-Haq, U. Shahzad, S. Hyder, S. Shahzaman, A. Khan, H. Aatif, A. Ahmad and A. Gondal. 2018. First report of bacterial canker caused by Pseudomonas syringae pv. morsprunorum race 1 on peach from Khyber Pakhtunkhwa province of Pakistan. Plant disease, 102: 2027-27. https://doi.org/10.1094/PDIS-10-17-1618-PDN
Bais, H. P., R. Fall and J. M. Vivanco. 2003. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant physiology, 134: 307-19. https://doi.org/10.1104/pp.103.028712
Berge, O., C. L. Monteil, C. Bartoli, C. Chandeysson, C. Guilbaud, D. C. Sands and C. E. Morris. 2014. A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLOS ONE, 9: e105547. https://doi.org/10.1371/journal.pone.0105547
Bottini, R., F. Cassan and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied microbiology and biotechnology, 65: 497-503. https://doi.org/10.1007/s00253-004-1696-1
Braun-Kiewnick, A. and D. C. Sands. 2001. Pseudomonas. In: N W Schaad, J B Jones and W Chun (eds.), Laboratory Guide for Identification of Plant Pathogenic Bacteria. American Phytopathological Society Press: St. Paul, Minesota, USA.
Bultreys, A. and I. Gheysen. 1999. Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants. Applied and Environmental Microbiology, 65: 1904-09. https://doi.org/10.1128/AEM.65.5.1904-1909.1999
Cassán, F. D., C. D. Lucangeli, R. Bottini and P. N. Piccoli. 2001. Azospirillum spp. metabolize [ 17,17-2H2] gibberellin A20 to [ 17,17-2H2] gibberellin A1 in vivo in dy rice mutant seedlings. Plant and Cell Physiology, 42: 763-67. https://doi.org/10.1093/pcp/pce099
Cha, J.-Y., S. Han, H.-J. Hong, H. Cho, D. Kim, Y. Kwon, S.-K. Kwon, M. Crüsemann, Y. Bok Lee, J. F. Kim, G. Giaever, C. Nislow, B. S. Moore, L. S. Thomashow, D. M. Weller and Y.-S. Kwak. 2015. Microbial and biochemical basis of a Fusarium wilt suppressive soil. The ISME Journal, 10: 119-29. https://doi.org/10.1038/ismej.2015.95
Choi, O., B. Kang, S. K. Cho, J. Park, Y. Lee, W.-I. Kim, J. Marunga, I. Hwang and J. Kim. 2016. Identification of Pseudomonas syringae pv. syringae causing bacterial leaf blight of Miscanthus sinensis. Journal of Plant Diseases and Protection, 124: 97-100. https://doi.org/10.1007/s41348-016-0058-4
Conn, V. M., A. R. Walker and C. M. M. Franco. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21: 208-18. https://doi.org/10.1094/MPMI-21-2-0208
Destéfano, S. A. L., L. M. R. Rodrigues, L. O. S. Beriam, F. R. A. Patrício, R. A. Thomaziello and J. Rodrigues-Neto. 2010. Bacterial leaf spot of coffee caused by Pseudomonas syringae pv. tabaci in Brazil. Plant Pathology, 59: 1162-63. https://doi.org/10.1111/j.1365-3059.2010.02357.x
Donati, I., G. Buriani, A. Cellini, N. Raule and F. Spinelli. 2018. Screening of microbial biocoenosis of Actinidia chinensis for the isolation of candidate biological control agents against Pseudomonas syringae pv. actinidiae. Acta Horticulturae: 239-46. https://doi.org/10.17660/ActaHortic.2018.1218.32
Durairaj, K., P. Velmurugan, J.-H. Park, W.-S. Chang, Y.-J. Park, P. Senthilkumar, K.-M. Choi, J.-H. Lee and B.-T. Oh. 2018. Characterization and assessment of two biocontrol bacteria against Pseudomonas syringae wilt in Solanum lycopersicum and its genetic responses. Microbiological Research, 206: 43-49. https://doi.org/10.1016/j.micres.2017.09.003
Ercolani, G. L. 1985. Factor analysis of fluctuation in populations of Pseudomonas syringae pv. savastanoi on the phylloplane of the olive. Microbial Ecology, 11: 41-49. https://doi.org/10.1007/BF02015107
Ercolani, G. L.. 1991. Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microbial Ecology, 21: 35-48. https://doi.org/10.1007/BF02539143
Gardan, L., H. Shafik, S. Belouin, R. Broch, F. Grimont and P. A. D. Grimont. 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). International Journal of Systematic and Evolutionary Microbiology, 49: 469-78. https://doi.org/10.1099/00207713-49-2-469
Gopalakrishnan, S., S. Pande, M. Sharma, P. Humayun, B. K. Kiran, D. Sandeep, M. S. Vidya, K. Deepthi and O. Rupela. 2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Protection, 30: 1070-78. https://doi.org/10.1016/j.cropro.2011.03.006
Gupta, R., R. K. Saxena, P. Chaturvedi and J. S. Virdi. 1995. Chitinase production by Streptomyces viridificans: Its potential in fungal cell wall lysis. Journal of Applied Bacteriology, 78: 378-83. https://doi.org/10.1111/j.1365-2672.1995.tb03421.x
Hirano, S. S. and C. D. Upper. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae- A pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews, 64: 624-53. https://doi.org/10.1128/MMBR.64.3.624-653.2000
Hong, C. E., S. Y. Kwon and J. M. Park. 2016. Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiological Research, 185: 13-21. https://doi.org/10.1016/j.micres.2016.01.004
Johansson, O. N., A. K. Nilsson, M. B. Gustavsson, T. Backhaus, M. X. Andersson and M. Ellerström. 2015. A quick and robust method for quantification of the hypersensitive response in plants. PeerJ, 3: e1469. https://doi.org/10.7717/peerj.1469
Jones, A. M., S. E. Lindow and M. C. Wildermuth. 2007. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. Journal of Bacteriology, 189: 6773-86. https://doi.org/10.1128/JB.00827-07
King, E. O., M. K. Raney and D. E. Ward. 1954. Two simple media for the demonstration of pyocianin and fluorescin. Journal of Laboratory and Clinical Medicine, 44: 301-07.
Koike, S. T., E. I. Alger, L. Ramos Sepulveda and C. T. Bull. 2017. First report of bacterial leaf spot caused by Pseudomonas syringae pv. tomato on kale in California. Plant disease, 101: 504-04. https://doi.org/10.1094/PDIS-10-16-1460-PDN
Kolla, N. J. P. and M. Vijayalakshmi. 2009. Chitinase production by Streptomyces sp. ANU 6277. Brazilian Journal of Microbiology, 40: 725-33. https://doi.org/10.1590/S1517-83822009000400002
Kurth, F., S. Mailänder, M. Bönn, L. Feldhahn, S. Herrmann, I. Große, F. Buscot, S. D. Schrey and M. T. Tarkka. 2014. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Molecular Plant-Microbe Interactions, 27: 891-900. https://doi.org/10.1094/MPMI-10-13-0296-R
Lamichhane, J. R., A. Messéan and C. E. Morris. 2015. Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. Journal of General Plant Pathology, 81: 331-50. https://doi.org/10.1007/s10327-015-0605-z
Lamichhane, J. R., L. Varvaro, L. Parisi, J.-M. Audergon and C. E. Morris. 2014. Disease and frost damage of woody plants caused by Pseudomonas syringae Advances in Agronomy. Elsevier. pp. 235-95. https://doi.org/10.1016/B978-0-12-800132-5.00004-3
Latorre, B. A. and A. L. Jones. 1979. Pseudomonas morsprunorum,the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Phytopathology, 69: 335-39. https://doi.org/10.1094/Phyto-69-335
Lelliott, R. A., E. Billing and A. C. Hayward. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology, 29: 470-89. https://doi.org/10.1111/j.1365-2672.1966.tb03499.x
Lelliott, R. A. and D. E. Stead. 1987. Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications: Oxford, Great Britain.
Little, E. L., R. M. Bostock and B. C. Kirkpatrick. 1998. Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruits in California. Applied and Environmental Microbiology, 64: 3818-23. https://doi.org/10.1128/AEM.64.10.3818-3823.1998
Mendes, R., M. Kruijt, I. de Bruijn, E. Dekkers, M. van der Voort, J. H. M. Schneider, Y. M. Piceno, T. Z. DeSantis, G. L. Andersen, P. A. H. M. Bakker and J. M. Raaijmakers. 2011. Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science, 332: 1097-100. https://doi.org/10.1126/science.1203980
Morris, C. E., C. Glaux, X. Latour, L. Gardan, R. Samson and M. Pitrat. 2000. The relationship of host range, physiology, and genotype to virulence on cantaloupe in Pseudomonas syringae from cantaloupe blight epidemics in France. Phytopathology, 90: 636-46. https://doi.org/10.1094/PHYTO.2000.90.6.636
Morris, C. E., J. R. Lamichhane, I. Nikolić, S. Stanković and B. Moury. 2019. The overlapping continuum of host range among strains in the Pseudomonas syringae complex. Phytopathology Research, 1: 1-16. https://doi.org/10.1186/s42483-018-0010-6
Morris, C. E., C. L. Monteil and O. Berge. 2013. The life history of Pseudomonas syringae: Linking agriculture to earth system processes. Annual review of phytopathology, 51: 85-104. https://doi.org/10.1146/annurev-phyto-082712-102402
Mulet, M., J. Lalucat and E. García-Valdés. 2010. DNA sequence-based analysis of the Pseudomonas species. Environmental Microbiology, 12: 1513-30. https://doi.org/10.1111/j.1462-2920.2010.02181.x
Polizzi, G., I. Castello, G. Parlavecchio and G. Cirvilleri. 2005. First report of bacterial blight of Strelitzia augusta caused by Pseudomonas syringae pv. lachrymans. Plant disease, 89: 1010-10. https://doi.org/10.1094/PD-89-1010A
Ryan, R. P., S. Monchy, M. Cardinale, S. Taghavi, L. Crossman, M. B. Avison, G. Berg, D. van der Lelie and J. M. Dow. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 7: 514-25. https://doi.org/10.1038/nrmicro2163
Sedighian, N., M. Shams-Bakhsh, E. Osdaghi and P. Khodaygan. 2014. Etiology and host range of bacterial leaf blight and necrosis of squash and muskmelon in Iran. Journal of Plant Pathology, 96: 507-14.
Solans, M., G. Vobis, F. Cassán, V. Luna and L. G. Wall. 2011. Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World Journal of Microbiology and Biotechnology, 27: 2195-202. https://doi.org/10.1007/s11274-011-0685-7
Stefani, E. and S. Loreti. 2014. Standard describes a diagnostic protocol for Pseudomonas syringae pv. actinidiae. EPPO Bulletin, 44: 360-75. https://doi.org/10.1111/epp.12171
Taguchi, F., T. Suzuki, Y. Inagaki, K. Toyoda, T. Shiraishi and Y. Ichinose. 2009. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. Journal of Bacteriology, 192: 117-26. https://doi.org/10.1128/JB.00689-09
Tarkka, M. T., N. A. Lehr, R. Hampp and S. D. Schrey. 2008. Plant behavior upon contact with streptomycetes. Plant Signaling & Behavior, 3: 917-19. https://doi.org/10.4161/psb.5996
Vicente, J. G., J. P. Alves, K. Russell and S. J. Roberts. 2004. Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. European Journal of Plant Pathology, 110: 337-51. https://doi.org/10.1023/B:EJPP.0000021060.15901.33
Xiao, K., L. L. Kinkel and D. A. Samac. 2002. Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biological Control, 23: 285-95. https://doi.org/10.1006/bcon.2001.1015
Young, J. M. 210. Taxonomy of Pseudomonas syringae. Journal of Plant Pathology, 92: 5-14.
DOI: 10.33687/phytopath.009.02.3270
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Tinatin Doolotkeldieva, Saikal Bobusheva
This work is licensed under a Creative Commons Attribution 4.0 International License.