Impact of cultural practices on trichoderma strains in papaya rhizosphere, diamare division, Cameroon

Pélagie Djenatou, Bourou Sali, Kosma Philippe

Abstract


Organic farming is a method of agricultural production that aims to respect natural systems and cycles, maintain and improve the condition of soil, water, and air, and the health of plants and animals. It is an answer to the environmental sufferings caused by chemical pesticides and synthetic fertilizers. Microscopic soil fungi in the genus Trichoderma are important in agricultural contexts as they induce soil fertility and plant resistance to pathogens. The present work assesses the presence of Trichoderma spp. in soil samples from the papaya rhizosphere in the Sudano-Sahelian area of Cameroon. Cultural practices were recorded in papaya orchards through semi-structured interviews addressed to papaya growers identified in this region. Ten papaya trees were randomly selected for soil samples in four treated plots. Three samples of soil were collected around each labelled papaya tree at 25, 50, and 75 cm from the trunk for a depth of up to 40 cm, and a composite sample consisting of the mixture of the resulting 30 soil samples performed per plot was obtained and kept for further analysis. Moreover, an additional composite soil sample from experimental papaya in the organic experimental farming site of Meskine was committed as a control plot. Microbiological studies were performed using a specific TSM at different concentration levels from 10-4 to 10-5, 10-6, 10-7, and 10-10 in Petri dishes with 6 repetitions each. The mean colonisation rate of Trichoderma spp. was compared between plots. Results showed that the common use of agrochemicals by papaya producers and the fire-prone when implementing papaya fields negatively impacted the development of useful Trichoderma strains in their farms. No Trichoderma strain was found in soil samples for each papaya farm from treated plots (0%). While, all samples analysed from the control plot were 100% productive of the soil-born microorganism sought. Farmers in the Diamare division are encouraged to use eco-friendly cultural methods for preserving Trichoderma spp. in the rhizosphere of papaya trees.


Keywords


Anthracnose; Carica papaya; Cultural practice; Fruit yield; Microorganism; Rhizosphere; Trichoderma

References


Azo’o, E.M., Ngapete, L.M., Djenatou, P., Kengni, B.S., Sakataï, P.D. and Tchuenguem, F.F.N. 2021. The Incidence and Economic Importance of the Entomofauna on the Growth and Production of Watermelon in Yagoua (Cameroon). Sustainable Agriculture Research, 10(2): 33-47.

Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S. and Vicanco. J.M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual review of Plant Biology, 57: 233-266.

Barbier, M., Jeanjean, J., Labadie-Lafforgue, E., Loechleiter, A., Plumet, L., Schatt, F., Adbelli, Z., Alary, S., Benzouaoi, H., Casi, D., Cornelis, S., Monie-Ibanes, M., Pierre, M., Pirou, L., Reggiardo, B., Surage, I., Teyssier, R. and Carré-Mlouka, M. 2022. Etude de la diversité microbienne du sol de la réserve naturelle du Lunaret. Biodiversité des sols. Etude de la gestion des sols, 185-197.

Bin, L., Shida, J., Huifang, Z., Yucheng, W. and Zihhua. L. 2020. Isolation of Trichoderma in the rhizosphere soil of Syring oblata from Harbin and their biocontrol and growth promotion function. Microbiological Research, 235: 126445.

Borges, C., Chagas, J., Carvalho, R. and Miller, B. 2015. Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. Journal of Soil and Soil Plant nutrition, 15(3): 794-804.

Bourou, S., Ndiayé, F., Diouf, M., Diop, T. and Van Damme, P. 2010. Tamarind (Tamarindus indica L.) parkland mycorrhizal potentiel within three agro-ecological zone of Senegal. Fruits, 65(6): 377-385.

Caillon, S. and Degeorges P., 2007. Biodiversity: Negotiating the border between nature and culture. Biodiversity Conservation, 16: 2919-2931.

Cao, Z. J., Qin, W.T., Zhao, J., Liu, Y., Wang, S.X. and Zheng, S.Y. 2022. Three new Thrichoderma species in Harzianum clade associated with the contaminated substrates of edible fungi. Journal of Fungi, 8: 1154.

Conedora, M., Bomio, N., Bomio, P., Sciacca, S., Grandi, L., Boureima, A. and Vetteraino, A. 2010. Reconstitution des écosystèmes dégradés sahéliens. Bois et Forêt des Tropiques, 304: 61-71.

Delange, Y. 2002. Traités des plantes tropicales. Actes Sud, Edisud, 239 p.

Fournet, J. 2002. Flore illustrée des phanérogames de Guadeloupe et de Martinique, Gondwana Editions, CIRAD, 136 p.

Gueye, N., Fall-Ndiaye, M.A., Sarr, B., Sall-Sy, D. and Diop, T.A. 2016. Influence in vitro de divers facteurs abiotiques (température, pH, Salinité) sur la croissance mycélienne de trois souches locales de Trichoserma sp. International Journal of Biological and Chemical Sciences, 10(2): 769-778.

Howell, C. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant diseases, 87: 4-10.

Jacobsen, C.S. and Hielms, M.H. 2014. Agricultural soils, pesticides and diversity. Current Opinion Biotechnology, 27: 15-20.

Lebégin, S., 2021. Papaye. Fiche technique “papaye”. Agripédia, 5 p.

Luo, X., Wang, M. K., Hu, G. and Weng, B. 2019. Seasonal change in microbial diversity and its relationship with soil chemical properties in an orchard. PLOS One, 14(12): e0215556.

Mäder, P., Peng, S. and Fliessbach, A. 2002. Effets des produits phytosanitaires sur les microorganisms du sol. VBB-Bulletin, 6 : 6-7.

Mavinga, M.S., Kinkela, C., Lukoki, L.F. and Binzangi, K.L. 2022. Conséquences environnementales et écologiques de l’agriculture itinérante sur brulis dans les environs du territoire de Lukula. International Journal of Applied studies, 36: 142-147.

Mbarga, J. B., Begoude, B. A. D., Ambang, Z., Meboma, M., Kuaté, J., Schiffers, B. and Ten-Hoopen, G. M. 2014. A new oil-based formulation of Trichoderma asperellum for the biological control of cacao black pod disease caused by Phytophthora megakarya. Biological Control, 77: 15-22.

Mbarga, J. B., Begoude, B. A. D., Ambang, Z., Meboma, M., Kuaté, J., Ewbank, W. and Ten Hoopen, G. M. 2020. Field testing an oil-based Trichoderma asperellum formulation for the biological control of cacao black pod disease, caused by Phytophthora megakarya. Crop Protection, 132: 105134.

Meliani, A., Bensotane, A., Benidire, L. and Oufdou, K. 2017. Research and Reviews. Journal of Botanical Sciences, 6(2): 16-24.

Morin, S. 2000. Géomorphologie. In: Seignobos C. & IYÉBI M. (ed.). Atlas de la province de l’Extrême-Nord du Cameroun. MINREST/IRD, Yaoundé, pp 7–16.

Mourina, B., Ouazzani, A. and Douira. A. 2008. Effet de diverses souches du Trichoderma sur la croissance d’une culture de tomate en serre et leur aptitude à coloniser les racines et le substrat. Phytoprotection, 88: 103-110.

Ntah, A. A. M., Tchameni, N. S., Siebatcheu, E.C., Ambata, A. H. T., Sameza, M. T. and Wansi, J. D. 2018. Efficacy of Trichoderma harzianum (Edtm) and Trichoderma aureoviride (T4) as potentiel biocontrol agent of taro leaf blight caused by Phythophthora colocasiae. International Journal of Applied Microbiology and Biotechnology Research, 6: 115-126.

Ouattara, B., Savadogo, P.W., Traore, O., Koulibaly, B., Sedogo, M. P. and Traoré, A. S. 2010. Effets des pesticides sur l’activité microbienne d’un sol ferrugineux tropical du Burkina Faso. Cameroon Journal of Experimental Biology, 6 (1): 11-20.

Ozbay, N. and Newman, S.E. 2004. The effect of the Trichoderma harzianum strains on the growth of the tomatoseedling. Acta of Horticulturae, 635: 131-135.

Parkash, V. and Saikai, A. J. 2015. Habitational abiotic environmental factors alter Arbuscular mycorrhizal composition, species richness and diversity index in Abroma augusta L. (Malvaceae) rhizosphere. Plant Pathology and Quarantine, 5 (2): 98-120.

Raunet, M. 2003. Quelques clés morpho-pédologiques pour le Nord-Cameroun à usage agronome. Cirad, Montpelliers, France, 65 p.

Rezaee, D.Y., Pellegrini, M., Kariman, K., Boyno, G., Djebaili, R., Farda, B. and Najafi, S. 2022. Genetic diversity of Trichoderma harzianumioslates in sunflower rhizosphere: The Application of the URP Molecular Marker. Sustainability, 14: 15111.

Ruangwong, O., Pornsuriya, C., Pitija, K. and Sunpapo, A. 2021. Biocontrol mechanisms of Trichoderma koningiopsis IG8PSU3-2 against Postharvest Anthracnose of Chili pepper. Journal of Fungi, 7(4): 276.

Ryan, R., Ryan, D. and Dowlin, D. 2007. An acquired efflux system is responsible for copper résistance in xanthomonas strain. Microbial Letters, 268: 40-46.

Sakataï, D.P., Olina, B.J.P. and Mahamat, A. 2018. Optimisation de la production du maïs-grain par l’application des formulations d’engrais complexes (NPKSB) dans la zone du Nord Cameroun. International Journal of Innovation and Applied Studies, 24: 1372-1384.

Sakataï, D.P., Jaza Foelefack, A. J. and Vandi, S. 2021. Evaluation optimale des facteurs contraignants à la production des bulbes d’oignons sous différents systèmes culturaux au Cameroun. Tropicultura, 39: 1799.

Sakatai, D., Alain, W., Ndouvahad, L., Paul, O. and Armand, A. 2023. Optimization of the production of five (05) onion varieties tested at different doses of organic and mineral fertilizers in the Far North Cameroon. International Journal of Agricultural Extension, 11: 139-165.

Santana, L. F., Inada, A. C., Espirito Santo, B. L. S. D., Filiú, W. F., Pott, A., Alves, F. M. and Hiane, P. A. 2019. Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients, 11(7): 1608.

Savadogo, P. W., Traore, O., Topan, M., Tapsoba, K. H., Sedogo, P. M., Bonzi-Coulibaly, L. Y. and Yvonne, Y. 2006. Variation de la teneur en résidus de pesticides dans les sols de la zone cotonnière du Burkina Faso. Journal Africain des Sciences de l’environnement, 1, 29-39.

Shigvo, N., Umeki, K. and Hirao, T. 2019. Seasonial dynamics of soil fungal and bacterial communities in cool-temperature montane forests. Frontiers in microbiology, 10 (1944): 1-14.

Srivastava, M., Singh, V., Shadid, M., Singh, A. and Kumar, V. 2014. Determination of biochemical and physiological aspects of a biocontrol agent Trichoderma harzanum Thazad. International Journal of Advanced Research, 2(3): 841-849.

Tchameni, S.N., Ngonkeu, M.E.L., Begoude, B.A.D., Wakam Nana, L., Fokom, R., Owona, A.D., Mbarga, J.B., Tchana, T., Tondje, P.R., Etoa, F.X. and Kueté, J. 2011. Effect of Trichoderma asperellum and Arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop protection, 30: 1321-1327.

Tchio, F., Youmbi, E., Maffo, A. and Funamo. A. N. 2014. Influence du mode de pollinisation et des caractéristiques des fruits semenciers sur la capacité germinative des grains du papayer solo. Agronomie Africaine, 25(2): 93-104.

Tondje, P., Robert, D., Widmer, T., Ismael, A., Begoudé, A., Tchana, T. and Hebbar, K. 2007. Isolation and identification of mycoparasitic isolates of Trichoderma asperullum with potential for suppression of black pod disease of cacao in Cameroon. Biological Control, 43: 202-212.

Tripathi, S., Suzuki, J. N. Y., Ferreira, S. A. and Gonsalves, D. 2008. Papaya ringspot Virus-P: Charactéristics, pathogenicity, sequence variability and control. Molecular Plant Pathology, 9(3): 269-280.

Vinale, F., Sivasithamparam, K., Ghisalberti, L. E., Marra, R., Woo, L.S. and Lorito. M. 2008. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40: 1-10.

WHO. 2023. L’incidence des produits chimiques, des déchets et de la pollution sur la santé humaine. Soixante-sixième assemblée mondiale de la santé, point 16.3 de l’ordre du jour, A76/A/CONF/2 du 24 mai 2023, Genève, 7 p.

Zimmerer, K.S. and de Haan S. 2017. Agrobiodiversity and a sustainable food future. Nature Plants, 3: 17047.


Full Text: PDF

DOI: 10.33687/ijae.012.002.5094

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Pélagie Djenatou, Bourou Sali, Kosma Philippe

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.