Efficacy of Rhizobacteria as Biocontrol Agents Against Verticillium Wilt in Eggplant
Abstract
The study aimed to explore the influence of Bacillus subtilis (Bs1) and Pseudomonas putida (Psp1) on Verticillium dahliae, the causal agent of Verticillium wilt in eggplant, under in vitro and greenhouse conditions. Seventeen purified bacteria exhibiting broad-spectrum antifungal activity were isolated from soil in the North Sinai Governorate, Egypt. The isolates Bacillus subtilis (Bs1) and Pseudomonas putida (Psp1) were identified through 16S rRNA gene analysis. Assays of antibacterial activity showed that Bs1 and Psp1 produced the highest amounts of hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA). Bs1 and Psp1 isolates recorded the highest levels of soluble phosphate in Pikovskaya's broth medium (6.39 and 6.46 ppm, respectively). Additionally, the highest values of soluble potassium in liquid medium were recorded by Bs1 and Psp1 isolates at 15.3 and 14.4 ppm, respectively. The maximum number of phenolic compounds was observed in Bs1 and Psp1, yielding 142.1 and 136.6 mg GA ml⁻¹. Under in vitro conditions, Bs1 and Psp1 demonstrated a strong ability to inhibit the mycelial growth of V. dahliae. A greenhouse experiment was conducted to evaluate the effects of Bs1 and Psp1 rhizobacteria, either individually or in combination, against Verticillium wilt using the long black hybrid cultivar. The fermentation broth of Bs1 and Psp1 reduced disease development (20%), decreased the disease index (13%), and achieved the highest control efficiency (86.4%). The combined treatment of Bs1 and Psp1 significantly increased both bud length (32.2 mm) and germination rate (97.5%) in eggplant. It also enhanced chlorophyll content and enzyme activity, with peroxidase (POD) and polyphenol oxidase (PPO) levels recorded at 6.2 U min⁻¹ g⁻¹ and 2.3 U min⁻¹ g⁻¹, respectively, in eggplant treated with Bs1 + Psp1 compared to the control. Additionally, the combined treatment significantly reduced disease severity and demonstrated potential as a plant growth-promoting agent.
Keywords
References
Abd Alamer, I.S., Tomah, A.A., Li, B., Zhang, J.Z. (2020). Isolation, Identification and Characterization of Rhizobacteria Strains for Biological Control of Bacterial Wilt (Ralstonia solanacearum) of Eggplant in China. Agriculture, 10(2), 37. https://doi.org/10.3390/agriculture10020037
Abo-Koura, H.A., Bishara, M.M., Maged, M.S. (2019) Isolation and Identification of N - Fixing, Phosphate and 2 Potassium Solubilizing Rhizobacteria and Their Effect on Root Colonization of Wheat Plant. Int J Microbiol Res, 10 (2): 62-76.
Ahemad, M. and Kibret, M. (2014) Mechanisms and applications of plant growth promoting rhizobacteria. Current perspective. J King Saud University Sci, 26:1–20.
Ajisha, M., Shaima, T.C., Menon, S.V., Kunhi, A.A.M. (2021) Bioaugmentation of soil with Pseudomonas monteilii strain eliminates inhibition of okra (Abelmoschus esculentus) seed germination by m-cresol. Curr Microbiol, 78(5):1892-1902. doi: 10.1007/s00284-021-02438-4.
Alexander, D.B., Zuberer, D.A. (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol and Fert Soils, 12: 39–45.
Anand, A., Chinchilla, D., Tan, C., Mène-Saffrané, L., L’Haridon, F., Weisskopf, L. (2020) Contribution of Hydrogen Cyanide to the Antagonistic Activity of Pseudomonas Strains Against Phytophthora infestans Microorganisms, 8: 1144. doi:10.3390/microorganisms8081144.
Archana, D.S. (2007) Studies on Potassium Solubilizing Bacteria. M.Sc. Thesis Faculty of Agriculture, University of Agriculture Science, Dharwad, 54-57.
Ausubell, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1987) Current Protocols in Molecular Biology, Greene Publishing Associates/Wiley Interscience, New York.
Bae, S., Han, J.W., Dang, Q.L., Kim, H., Choi, G.J. (2021) Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds. Plants, 10: 1496. doi.org/10.3390/ plants10081496
Bergey, D. and Holt, J.G. (2000) Bergey’s Manual of Determinative Bacteriology. In: Bacteria -classification. Holt, J.G; N.R. Krieg; P.H.A. Sneath; J.T. Staley and S.T. Williams (Eds.) 9th edition. Philadelphia: Lippincott Williams & Wilkins 643-648.
Bilginturan, M. and Hatat Karaca, G. (2021) Effects of Trichoderma and PGPR applications on growth and Verticillium wilt of eggplant. Mediterr Agric Sci, 34(3): 267-272.
Bric, J.M., Bostock, R.M., Silverstone, S.E. (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. App and Environ Microbiol, 57(2):535-538.
Chance, B. and Maehly, A.C. (1955) Assay of catalase and peroxidase. Meth Enzymol 2: 764-775. doi.org/10.1016/S0076-6879(55)02300-8.
Deketelaere, S., Tyvaert, L., França, S.C., Höfte, M. (2017) Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt. Front Microbiol, 8:1186. doi: 10.3389/fmicb.2017.01186.
Dellagi, A., Segond, D., Rigault, M., Fagard, M., Simon, C., Saindrenan, P., Expert, D. (2009) Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol, 150: 1687-1696.
Dowsn, W.J. (1957) Plant diseases due to bacteria, 2nd ed. Cambridge University Press, Cambridge
Eid N.A., Abutaha M.M., Fahmy W.G.E., Ahmed F.A., zaki K.I. (2024) Exploiting endophytic bacteria towards managing squash powdery mildew disease. . Physiol. Mol. Plant Pathol. 133,102375
El-Batal A.I., Eid N.A., Al-Habeeb R.S., Al-Bishri W.M., El-Sayyad G.S., Badran A.E. (2024) Promising antifungal behavior of biosynthesized bimetallic silver-copper oxide nanoparticles and Bacillus safensis against some strawberry rots. Physiol. Mol. Plant Pathol. 133, 102366
Fang, X., Finnegan, P.M., Barbetti, M.J. (2013) Wide variation in virulence and genetic diversity of binucleate Rhizoctonia isolates associated with root rot of strawberry in Western Australia. PLoS One, 8(2) e55877. doi: 10.1371/journal. phone.0055877.
Formisano, L., Miras-Moreno, B., Ciriello, M., El- Nakhel, C., Corrado, G., Lucini, L., Colla, G., Rouphael, Y. (2021) Trichoderma and phosphite elicited distinctive secondary metabolite signatures in zucchini squash plants. Agronomy, (11): 1205. doi.org/10.3390/agronomy11061205.
Gu, D-D., Wang, W-Z., Hu, J-D., Zhang, X-M., Wang, J-B., Wang, B-S. (2016) Nondestructive Determination of Total Chlorophyll Content in Maize Using Three-Wavelength Diffuse Reflectance. J Appl Spectrosc, 83(4) 541–547.
Harting, R., Nagel, A., Nesemann, K., Höfer, A.M., Bastakis, E., Kusch, H., Stanley, C.E., Stöckli, M., Kaever, A., Hoff, K.J., Stanke, M., deMello, A.J., Künzler, M., Haney, C.H., Braus-Stromeyer, S.A., Braus, G.H. (2021) Pseudomonas Strains Induce Transcriptional and Morphological Changes and Reduce Root Colonization of Verticillium spp. Front Microbiol, 12:652468. doi: 10.3389/fmicb.2021.652468.
Hammerschmidt, R., Nuckles, E.M., Kuc, J. (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol, 20(1): 73-76.
Heidari, M. and Golpayegani, A. (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agr Sci, 11(1):57-61.
Hu, X., Chen, J., Guo, J. (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol and Biotechnol, 22: 983-990.
Jabnoun-Khiareddine, H., Daami-Remadi, M., Ayed, F., El Mahjoub, M. (2007) Incidence and distribution of Verticillium dahliae races infecting tomato in Tunisia. Tunis J Plant Protec, 2: 63-70.
Jackson, M.L. (1958) Soil Chemical Analysis. Prenticaints Hall Inc Englewood Cliffs. N.J. J Plant Nutr and Soil Sci, 85(3): 251-252.
Jha, C.K. and Saraf, M. (2015) Plant growth promoting rhizobacteria (PGPR): a review. E3 J Agr Res and Develop, 5(2):108-119.
Kaniyasserya, A., Thorata, S.A., Kirana, K.R., Muralib, T.S., Muthusamy, A. (2023) Fungal diseases of eggplant (Solanum melongena L.) and components of the disease triangle: A review J Crop Improve, 37(4) 543–594. doi.org/10.1080/15427528.2022.2120145.
Klosterman, S.J., Atallah, Z.K., Vallad, G.E., Subbarao, K.V. (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol, 47:39–62. doi.org/10. 1146/annurev-phyto-080508-081748.
Kucuk, C., Kivanc, M. (2003) Isolation of Trichoderma spp. And determination of their antifungal, biochemical and physiological features. Turk Biol, 27: 247-253.
Kumar, A., Bahadur, I., Maurya, B.R., Raghuwanshi, R., Meena, V.S., Singh, D.K., Dixil, J. (2015) Does plant growth promoting rhizobacteria enhance agricultural sustainability? J Pure and App Microbiol, 9(1):715-724.
Kumar, N.S., Min, K.K. (2011) Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem Engin J, 168(2):562-571. doi.org/10.1016/j.cej.2011.01.023.
Lan, X., Zhang, J., Zong, Z., Ma, Q., Wang, Y. (2017). Evaluation of the Biocontrol Potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in Eggplant. Hindawi BioMed Research International, 2017, Article ID 4101357, 8 pages doi.org/10.1155/2017/4101357.
Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, Editors. Nucleic Acid Techniques in Bacterial Systematics. Chichester: John Wiley and Sons, New York, pp: 115-175.
Li, J-G., Jiang, Z-Q., Xu, L-P., Sun, F-F., Guo, J-H. (2008) Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. Bio Control, 53: 931–944. doi: 10.1007/s10526-007-9144-7.
Lin, L., QIAO, Y-S., JU, Z-Y., MA, C-W., LIU, Y-H., ZHOU, Y-J., DONG, H-S. (2009) Isolation and Characterization of Endophytic Bacillius subtilis Jaas ed1 Antagonist of Eggplant Verticillium wilt. Biosci Biotechnol Biochem, 73(7) 1489-1493.
Madhi, Q.H., Jumaah, A.M. (2020) Affectivity evaluation of Bacillus subtilis in controlling eggplant root rot caused by Rhizoctonia solani and Fusarium solani. 1st scientific international virtual agricultural conference iop conf. Series: Earth Environ Sci, 553 012026. doi:10.1088/1755-1315/553/1/012026.
Mehnaz, S. (2016) An overview of globally available bioformulations. Springer India N.K. Arora et al. (eds.), Bioformulations: for Sustainable Agriculture, doi: 10.1007/978-81-322-2779-3_15.
Meszka, B. (2013) Presence of Verticillium dahliae Kleb. in strawberry crops in Poland and possibilities of their protection against verticillosis. Phytopathologia, 52: 21–27.
Misaghi, I.J. and Donndelinger, C.R. (1990) Endophytic Bacteria in Symptom-Free Cotton Plants. Phytopathology, 80: 808–811.
Mishra, J., Singh, R., Arora, N.K. (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol, 8:1706-1712.
Mitter, N., Srivastava, A.C., Ahamad, R.S., Sarbhoy, A.K. , Agarwal, D.K. (2002) Characterization of Gibberellin Producing Strains of Fusarium Moniliforme Based on DNA Polymorphism. Mycopathologia, 153(4):187-193. doi: 10.1023/a:1014946217539.
Musilova, L., Ridl, J., Polivkova, M., Macek, T., Uhlik, O. (2016) Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Inter J Mol Sci, 17(8):1205 p 1-31.
Ni, H., Kong, W-L., Zhang, Y., Wu, X-Q. (2022) Effects of Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae. J Fungi, 8: 697. doi.org/10.3390/ jof8070697.
Oktay, M., Kufreviolu, I., Kococaliskan, I., Şakirolu, H. (1995) Polyphenol oxidase from Amasya Apple J Food Sci, 60 (3) 495-499. doi.org/10.1111/j.1365-2621.1995.tb09810.x.
Panth, M., Hassler, S.C., Baysal-Gurel, F. (2020) Methods for management of soilborne diseases in crop protection. Agriculture, 10:16. doi.org/10.3390/agriculture10010016.
Peia, D., Zhanga, Q., Zhua, X., Han, S. (2023) Endophytic Bacillus subtilis P10 from Prunus cerasifera as a biocontrol agent against tomato Verticillium wilt. Braz J Biol, 83, e244261. doi.org/10.1590/1519-6984.244261
Pikovskaya, R.I. (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17: 362–370.
Reetha, A.K., Pavani, S.L., Mohan, S. (2014) Hydrogen Cyanide Production Ability by bacterial antagonist and their Antibiotics Inhibition Potential on Macrophomina phaseolina (Tassi.) Int J Curr Microbiol App Sci, 3(5): 172-178.
Reusche, M., Truskina, J., Thole, K., Nagel, L., Rindfleisch, S., Tran, V.T., Braus-Stromeyer, S.A., Braus, G.H., Teichmann, T., Lipka, V. (2014) Infections with the vascular pathogens Verticillium longisporum and Verticillium dahliae induce distinct disease symptoms and differentially affect drought stress tolerance of Arabidopsis thaliana. Environ Exp Bot, 108: 23–37.
Rijavec, T. and Lapanje, A. (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol, 7:1785. doi: 10.3389/fmicb.2016.01785.
Saber, F.M.A., Abdelhafez, A.A., Hassan, E.A., Ramadan, E.M. (2015) Characterization of fluorescent Pseudomonades isolates and their efficiency on the growth promotion of tomato plant. Ann Agr Sci, 60(1):131-140.
Saito, Y., Sato, T., Nomoto, K., Tsuji, H. (2018) Identification of phenol and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol, 94(9):1-11.
Sofy A.R., Sofy M.R., Hmed A.A., Dawoud R.A., Refaey E.E., Mohamed H.I., El-Dougdoug N.K., Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid, Plants 10 (3) (2021) 459.
Sugumaran, P., Janarthanam, B. (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agr Sci, 3: 350-355.
Sulu, G., Polat, I., Boyaci, H.F., Yildirim, A., Gümrükcü, E. (2022) Screening and validation of three molecular markers for disease resistance in eggplant. Czech J. Genetics and Plant Breed, 58 (2): 83–92.
Tjamos, E.C., Tsitsigiannis, D.I., Tjamos, S.E., Antoniou, P.P., Katinakis, P. (2004) Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol, 110: 35-44.
Tomah, A.A., Alamer, I.S.A., Khattak, A.A., Ahmed, T., Hatamleh, A.A., Al-Dosary, M.A., Ali, H.M., Wang, D., Zhang, J., Xu, L., Li, B. (2023). Potential of Trichoderma virens HZA14 in Controlling Verticillium Wilt Disease of Eggplant and Analysis of Its Genes Responsible for Microsclerotial Degradation. Plants, 12(21), 3761. https://doi.org/10.3390/plants12213761
Urbanek, H., Kuzniak-Gebarowska, E., Herka, K. (1991) Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant, 13: 43-50.
Wang, D., Su, Z., Ning, D., Zhao, Y., Meng, H., Dong, B., Zhao, J., Zhou, H. (2021) Different appearance period of Verticillium wilt symptoms affect sunfower growth and production. J Plant Pathol, 103:513– 517. doi.org/10.1007/s42161-021-00772-x.
Wang, W-Y., Kong, W-L., Liao, Y-C-Z., Zhu, L-H. (2022) Identification of Bacillus velezensis SBB and Its Antifungal Effects against Verticillium dahliae. J Fungi, 8, 1021. doi.org/ 10.3390/jof8101021
Watts R, Dahiya J, Chaudhary K, et al. Isolation and Characterization of a New Antifungal Metabolite of Trichoderma reseii. Plant and Soil 107: 81-84. 1988
Wei, G., Kloepper, J.W., Tuzun, S. (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strain of plant growth promoting rhizobacteria. Phytopathology, 81: 1508-1512.
Wensing, A., Braun, S.D., Buettner, P., Expert, D., Voelksch, B., Ullrich, M.S., Weingart, H. (2010) Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. App and Environ Microbiol, 76(9):2704-2711.
Wu, Z., Huang, Y., Li, Y., Dong, J., Liu, X., Li, C. (2019) Biocontrol of Rhizoctonia solani via Induction of the Defense Mechanism and Antimicrobial Compounds Produced by Bacillus subtilis SL-44 on Pepper (Capsicum annuum L.). Front Microbiol, 10:2676. doi: 10.3389/fmicb.2019.02676.
DOI: 10.33687/phytopath.013.03.5377
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ahmed ElSharawy, Nerhan Eid, Azza Ebrahiem

This work is licensed under a Creative Commons Attribution 4.0 International License.