Response of Tomato Plant to Abiotic (Heat Stress) and Biotic (Tomato Leaf Curl New Delhi Virus, TOLCNDV) Factors

Muhammad A. Ali, Muhammad A. U. Khan, Abdul Q. Rao

Abstract


Tomato (Lycopersicon esculentum) is a vital fruit-bearing plant renowned for its nutritional advantages. Subjected to various environmental stresses, its yield is significantly impacted. Plants, confronting combined biotic and abiotic stresses, exhibit diverse responses through the evolution of cellular defense mechanisms. Sensitivity to extreme temperatures and pathogenic threats, such as the white fly-transmitted tomato leaf curl New Delhi virus (ToLCNDV), a Begomovirus, underscores the global susceptibility of tomato crops. This study aimed to assess tomato plant responses to the compounding stress of heat and agroinfiltrated ToLCNDV, analyzing four key physiological parameters viz., photosynthesis rate, stomatal conductance, transpiration rates, and Water use efficiency. Results indicated reduced photosynthesis rate of 5.1 ± 0.54 % mol CO2 m-2s-1, diminished stomatal conductance of 89.84±1.27% mmol.m-2s-1, and transpiration rates of 0.978 ± 0.148 %mmol.m-2s-1 as compared to control group as 8.56 ± 0.55 % mol CO2 m-2s-1, 189.08±19.13%mmol.m-2s-1and 2.586 ± 0.415 % mmol.m-2s-1respectively. Water use efficiency increased in double-stressed plants at 9.1 ± 0.96 % mmol CO2mol-1 H2O with respect to control 5.84 ± 0.48 % mmol CO2mol-1 H2O. The combined stressors manifested a net adverse impact, with neither ToLCNDV mitigating heat stress effects nor vice versa. Contrarily, their combined consequences were significantly amplified compared to individual stressors, emphasizing the intricate interplay of heat stress and ToLCNDV on tomato plants. This research marks a pioneering effort to uncover the physiological responses of a vulnerable tomato cultivar to the combined pressures of ToLCNDV and heat stress. Furthermore, it signifies a novel pathway towards the development of transgenic cultivars capable of effectively managing these stresses.


Keywords


ToLCNDV; Heat stress; Abiotic-biotic influence; Physiological traits

References


Adhikari, B., M. Adhikari, B. Ghimire, B. C. Adhikari, G. Park and E. H. Choi. 2020. Cold plasma seed priming modulates growth, redox homeostasis and stress response by inducing reactive species in tomato (Solanum lycopersicum). Free Radical Biology and Medicine, 156: 57-69.

Atkinson, N. J. and P. E. Urwin. 2012. The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63: 3523-43.

Berges, S. E., F. Vasseur, A. Bediee, G. Rolland, D. Masclef, M. Dauzat, M. van Munster and D. Vile. 2020. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathogens, 16: e1008557.

Bergès, S. E., D. Vile, C. Vazquez-Rovere, S. Blanc, M. Yvon and M. van Munster. 2018. Interactions between drought and plant genotype change epidemiological traits of Cauliflower mosaic virus. Frontiers in Plant Science, 9: 363661.

Bragard, C., P. Caciagli, O. Lemaire, J. Lopez-Moya, S. MacFarlane, D. Peters, P. Susi and L. Torrance. 2013. Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51: 177-201.

Corrales‐Gutierrez, M., L. Medina‐Puche, Y. Yu, L. Wang, X. Ding, A. P. Luna, E. R. Bejarano, A. G. Castillo and R. Lozano‐Duran. 2020. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA‐independent mechanism. Plant Biotechnology Journal, 18: 1121.

Davis, T. S., N. A. Bosque‐Pérez, N. E. Foote, T. Magney and S. D. Eigenbrode. 2015. Environmentally dependent host–pathogen and vector–pathogen interactions in the Barley yellow dwarf virus pathosystem. Journal of Applied Ecology, 52: 1392-401.

Farooq, T., D. Liu, X. Zhou and Q. Yang. 2019. Tomato yellow leaf curl china virus impairs photosynthesis in the infected Nicotiana benthamiana with βC1 as an aggravating factor. The Plant Pathology Journal, 35: 521.

Fraile, A. and F. García-Arenal. 2016. Environment and evolution modulate plant virus pathogenesis. Current Opinion in Virology, 17: 50-56.

Froissart, R., J. Doumayrou, F. Vuillaume, S. Alizon and Y. Michalakis. 2010. The virulence–transmission trade-off in vector-borne plant viruses: A review of (non-) existing studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 1907-18.

González, R., A. Butković, F. J. Escaray, J. Martínez-Latorre, Í. Melero, E. Pérez-Parets, A. Gómez-Cadenas, P. Carrasco and S. F. Elena. 2021. Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proceedings of the National Academy of Sciences, 118: e2020990118.

Hatfield, J. L. and J. H. Prueger. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10: 4-10.

He, Y.-Z., Y.-M. Wang, T.-Y. Yin, E. Fiallo-Olivé, Y.-Q. Liu, L. Hanley-Bowdoin and X.-W. Wang. 2020. A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proceedings of the National Academy of Sciences, 117: 16928-37.

Hily, J. M., N. Poulicard, M. Á. Mora, I. Pagán and F. García‐Arenal. 2016. Environment and host genotype determine the outcome of a plant–virus interaction: From antagonism to mutualism. New Phytologist, 209: 812-22.

Hosseini, S. A., G. R. Zamani, Z. M. Yaghub and M. Khayyat. 2018. Effects of Cucumber Mosaic Virus infection and drought tolerance of tomato plants under greenhouse conditions: Preliminary results. Journal of Berry Research, 8: 129-36.

Jež-Krebelj, A., M. Rupnik-Cigoj, M. Stele, M. Chersicola, M. Pompe-Novak and P. Sivilotti. 2022. The physiological impact of GFLV virus infection on grapevine water status: First observations. Plants, 11: 161.

Khetrapal, S., M. Pal and S. Lata. 2009. Effect of elevated temperature on growth and physiological characteristics in chickpea cultivars. Indian Journal of Plant Physiology, 14: 377-83.

Manacorda, C. A., G. Gudesblat, M. Sutka, S. Alemano, F. Peluso, P. Oricchio, I. Baroli and S. Asurmendi. 2021. TuMV triggers stomatal closure but reduces drought tolerance in Arabidopsis. Plant, Cell and Environment, 44: 1399-416.

Mazzeo, M. F., G. Cacace, P. Iovieno, I. Massarelli, S. Grillo and R. A. Siciliano. 2018. Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: A proteomic perspective. Plos One, 13: e0201027.

Mellidou, I., A. Koukounaras, S. Kostas, E. Patelou and A. K. Kanellis. 2021. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes, 12: 694.

Millstead, L., H. Jayakody, H. Patel, V. Kaura, P. R. Petrie, F. Tomasetig and M. Whitty. 2020. Accelerating automated stomata analysis through simplified sample collection and imaging techniques. Frontiers in Plant Science, 11: 580389.

Mishra, R., M. Shteinberg, D. Shkolnik, G. Anfoka, H. Czosnek and R. Gorovits. 2022. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Molecular Plant Pathology, 23: 475-88.

Murray, R. R., M. S. Emblow, A. M. Hetherington and G. D. Foster. 2016. Plant virus infections control stomatal development. Scientific Reports, 6: 34507.

Prasad, A., S. Sett and M. Prasad. 2022. Plant-virus-abiotic stress interactions: A complex interplay. Environmental and Experimental Botany, 199: 104869.

Raja, V., S. U. Qadir, M. N. Alyemeni and P. Ahmad. 2020. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 10: 1-18.

Rizhsky, L., H. Liang and R. Mittler. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130: 1143-51.

Thole, V., P. Vain and C. Martin. 2021. Effect of elevated temperature on tomato post-harvest properties. Plants, 10: 2359.

Tiwari, S., A. Patel, M. Singh and S. M. Prasad. 2020. Regulation of temperature stress in plants. In: Durgesh Kumar Tripathi, Vijay Pratap Singh, Devendra Kumar Chauhan, Shivesh Sharma, Sheo Mohan Prasad, Nawal Kishore Dubey and Naleeni Ramawat (eds.), Plant Life Under Changing Environment Academic Press.

Van Munster, M., M. Yvon, D. Vile, B. Dader, A. Fereres and S. Blanc. 2017. Water deficit enhances the transmission of plant viruses by insect vectors. Plos One, 12: e0174398.

Vile, D., M. Pervent, M. Belluau, F. Vasseur, J. Bresson, B. Muller, C. Granier and T. Simonneau. 2012. Arabidopsis growth under prolonged high temperature and water deficit: Independent or interactive effects? Plant, Cell and Environment, 35: 702-18.

Xu, P., F. Chen, J. P. Mannas, T. Feldman, L. W. Sumner and M. J. Roossinck. 2008. Virus infection improves drought tolerance. New Phytologist, 180: 911-21.

Yin, Y., S. Li, W. Liao, Q. Lu, X. Wen and C. Lu. 2010. Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. Journal of Plant Physiology, 167: 959-66.

Yvon, M., D. Vile, V. Brault, S. Blanc and M. van Munster. 2017. Drought reduces transmission of Turnip yellows virus, an insect-vectored circulative virus. Virus Research, 241: 131-36.

Zemedkun, D., H. Alaparmak and S. Apte. 2019. The effect of herbicides on the rates of photosynthesis and respiration in spinach leaves. Journal of High School Science, 12: 7518.

Zheng, L., J. Yang, Y. Chen, L. Ding, J. Wei and H. Wang. 2021. An improved and efficient method of Agrobacterium syringe infiltration for transient transformation and its application in the elucidation of gene function in poplar. BMC Plant Biology, 21: 1-19.

Zhu, Y., Z. Cheng, K. Feng, Z. Chen, C. Cao, J. Huang, H. Ye and Y. Gao. 2022. Influencing factors for transpiration rate: A numerical simulation of an individual leaf system. Thermal Science and Engineering Progress, 27: 101110.


Full Text: PDF

DOI: 10.33687/phytopath.013.01.5127

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Muhammad Ayyaz Ali

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.