Systematic Evaluation of Groundnut Genotypes for Resistance to Cercospora Leaf Spot Disease

Sunbal Mushtaq, Tariq Mukhtar, Amir Afzal, Farah Naz, Muhammad A. Khan

Abstract


The present study assessed peanut genotypes for resistance to Cercospora leaf spot (CLS), with a focus on disease severity and defoliation across different growth stages. Based on Percent Incidence Data (PID) and defoliation scores, genotypes were classified as susceptible, moderately resistant, or resistant. Disease progression was measured through the Area under the Disease Progress Curve (AUDPC), revealing significant variation in resistance among the genotypes. Most genotypes, including 21CG001, 21CG002, 21CG003, 21CG004, 21CG006, ATTOCK 19, and 20AK012, exhibited high PID and defoliation levels, with AUDPC values indicating susceptibility. Their PID ranged from 23.96 to 31.72 at 50 days after sowing (DAS) and from 44.84 to 56.97 at 70 DAS. Genotypes 21CG005, 20AK004, and ATTOCK 19 showed the highest PID and defoliation levels, with AUDPC values over 320, categorizing them as highly susceptible. Conversely, genotypes 21CG007, 21CG008, 20AK001, and 20AK010 demonstrated the lowest PID, minimal defoliation, and AUDPC values below 250, indicating strong resistance. In vitro trials further highlighted variability in lesion characteristics, with genotypes 20AK012, BARI 16, and 20AK010 showing the most severe symptoms, including rough lesion textures and types ranging from minute chlorotic spots to mature black lesions. Overall, genotypes 21CG007, 21CG008, 20AK001, and 20AK010 exhibited high resistance, while ATTOCK 19, 20AK004, and 21CG005 were highly susceptible. These findings underscore the importance of selecting resistant genotypes for effective CLS management in peanut cultivation.

Keywords


Groundnut genotypes; Cercospora leaf spot; Disease resistance; Peanut breeding; Disease severity evaluation

References


Abebele, G. M., & Zerihun, A. A. 2024. Evaluation of bread wheat germplasm for adult plant resistance to stem rust using artificial inoculation. Plant Protection, 8(3): 523-530.

Acheampong, F., Miller, A. N., & Babadoost, M. 2024. Identifying species of pathogens causing bitter rot of apples in Illinois and efficacy of fungicides for managing the disease. HortTechnology, 34(2): 215-226.

Admasu, W., Sintayehu, A., & Gezahgne, A. 2024. In vitro evaluation of fungicides against eucalyptus stem canker pathogens in Ethiopia. Plant Protection, 8(3): 385-395.

Afzal, A., Mushtaq, S., Ahmad, A., Arsalan, M., Sarwar, S., Khan, A. G., . . . Abbas, A. 2024. Modern approaches to enhancing rust resistance in wheat leading to global food security. Plant Protection, 8(1): 169-182.

Ahmed, M., Mikhail, S. P., & Shaheen, S. 2023. Performance efficiency of some biocontrol agents on controlling Cercospora leaf spot disease of sugar beet plants under organic agriculture system. European Journal of Plant Pathology, 167(2): 145-155.

Asad, S., Munir, A., Malik, S. N., & Nawaz, N. 2017. Evaluation of ground nut material against Tikka leaf spot disease under natural field conditions at NARC. Pakistan Journal of Phytopathology, 29(1): 23-27.

Bera, G., & Ghose, S. 1999. Biochemical defence and the nature of gene action against Tikka disease in groundnut. Indian Journal of Genetics and Plant Breeding, 59(03): 331-336.

Bulathsinghala, A., & Shaw, I. 2014. The toxic chemistry of methyl bromide. Human and experimental toxicology, 33(1): 81-91.

Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C., & Stanley, D. A. 2019. Fungicides, herbicides and bees: A systematic review of existing research and methods. PloS one, 14(12): e0225743.

Dar, W. A., Bhat, B. A., Magray, M. M., Bhat, F. A., ul Mir, R., Khan, M. A., . . . Zargar, S. M. 2024. Assessing potato cultivars for resistance against late blight under high altitudinal conditions of North Western Himalayas. Plant Protection, 8(3): 365-373.

Denwar, N. N., Simpson, C. E., Starr, J. L., Wheeler, T. A., & Burow, M. D. 2021. Evaluation and selection of interspecific lines of groundnut (Arachis hypogaea L.) for resistance to leaf spot disease and for yield improvement. Plants, 10(5): 873.

Dey, S. R., Sharma, M., Kumar, P., & Dwivedi, P. 2024. Genetic improvement of groundnut. In Genetic Engineering of Crop Plants for Food and Health Security Vol. 2, pp. 281-306: Springer.

FAO. 2023. World Food and Agriculture Statistical year Book. Retrieved from Rome, Italy:

Feng, Y., Huang, Y., Zhan, H., Bhatt, P., & Chen, S. 2020. An overview of strobilurin fungicide degradation: Current status and future perspective. Frontiers in microbiology, 11: 389.

Gaikpa, D. S., Akromah, R., Asibuo, J. Y., Appiah-Kubi, Z., & Nyadanu, D. 2015. Evaluation of yield and yield components of groundnut genotypes under Cercospora leaf spots disease pressure. International Journal of Agronomy and Agricultural Research, 7(3): 66-75.

Gonzales, M., Kemerait Jr, R., Bertioli, D., & Leal-Bertioli, S. 2023. Strong resistance to early and late leaf spot in peanut-compatible wild-derived induced allotetraploids. Plant Disease, 107(2): 335-343.

Gopal, K., Upadhyaya, H., & Vijayakumar, S. 1994. Evaluation of elite Spanish groundnut genotypes for resistance to foliar diseases. Groundnut News, 6: 34.

Hasnain, A., Atiq, M., Rajput, N. A., Nawaz, A., Ahmad, W., Akhtar, M., . . . Ullah, A. 2024. Biocidal function of Trichoderma-derived secondary metabolites against Fusarium wilt of pea. Plant Protection, 8(3): 497-511.

Houshyarfard, M., & Padasht Dahkai, M.-T. 2018. Evaluation of peanut genotypes for resistance to Cercospora leaf spot diseases in Iran. Journal of Crop Protection, 7(4): 437-446.

Hussain, S., Shah, S. J. A., Leconte, M., & de Vallavieille-Pope, C. 2024. Assessment of genetic variability for wheat yellow rust resistance and Puccinia striiformis f. sp. tritici pathotypes from Pakistan. Plant Protection, 8(2): 239-255.

ICRISAT. 2023. Annual Report 2023. Retrieved from https://www.icrisat.org

Iqbal, U., & Mukhtar, T. 2020. Inhibitory effects of some fungicides against Macrophomina phaseolina causing charcoal rot. Pakistan Journal of Zoology, 52(2): 709-715.

Iqbal, U., Mukhtar, T., & Iqbal, S. M. 2014. In vitro and in vivo evaluation of antifungal activities of some antagonistic plants against charcoal rot causing fungus, Macrophomina phaseolina. Pakistan Journal of Agricultural Sciences, 51(3): 689-694.

Janila, P., Nigam, S., Pandey, M. K., Nagesh, P., & Varshney, R. K. 2013. Groundnut improvement: Use of genetic and genomic tools. Frontiers in plant science, 4: 23.

Jeger, M., & Viljanen-Rollinson, S. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102: 32-40.

Kankam, F., Akpatsu, I. B., & Tengey, T. K. 2022. Leaf spot disease of groundnut: A review of existing research on management strategies. Cogent Food and Agriculture, 8(1): 2118650.

Kaur, L., Cavassa, M., Campbell, H. L., Burch, K., Hagan, A. K., Parker, C., & Strayer-Scherer, A. 2024. Optimizing fungicide programs for peanut leaf spot management in southeast Alabama: A case for reducing chlorothalonil use. Crop Protection: 106809.

Kongola, E. F. 2018. Breeding for durable resistance to Cercospora leaf spot diseases in groundnuts (Arachis hypogaea L.) in Tanzania. Doctoral dissertation. University of Kwazulu-Natal, Republic of South Africa.

Lobell, D. B., Cassman, K. G., & Field, C. B. 2009. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34(1): 179-204.

Manzoor, F., Atiq, M., Aleem, M., Naveed, K., Khan, N. A., Kachelo, G. A., . . . Rajput, N. A. 2024. Appraisal of antifungal potential of chemicals and plant extracts against brown leaf spot of soybean caused by Septoria glycine. Plant Protection, 8(3): 447-455.

McKinney, H. 1923. Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26: 195.

Méndez-Natera, J. R., Luna-Tineo, J. A., Barrios-Azocar, L. A., & Cedeño, J. R. 2016. Screening of Indian peanut genotypes for resistance to Cercospora leaf-spot under savanna conditions. Emirates Journal of Food and Agriculture, 28(12): 833-841.

Mohammed, K. E., Afutu, E., Odong, T. L., Okello, D. K., Nuwamanya, E., Grigon, O., . . . Okori, P. 2018. Assessment of groundnut (Arachis hypogaea L.) genotypes for yield and resistance to late leaf spot and rosette diseases. Journal of Experimental Agriculture International, 21: 1-13.

Morio, B. A., Zaman, S., Dahar, G. Y., Khanzada, N., Rajput, M. A., Hussain, T., . . . Iqbal, O. 2024. Effectiveness of some novel fungicides against the sheath blight pathogen Rhizoctonia solani in rice under in vitro and in vivo conditions. Plant Protection, 8(3): 423-432.

Mugisa, I., Karungi, J., Akello, B., Ochwo-Ssemakula, M., Biruma, M., Okello, D., & Otim, G. 2016. Determinants of groundnut rosette virus disease occurrence in Uganda. Crop Protection, 79: 117-123.

Narh, S., Boote, K. J., Naab, J. B., Abudulai, M., M’Bi Bertin, Z., Sankara, P., . . . Jordan, D. L. 2014. Yield improvement and genotype× environment analyses of peanut cultivars in multilocation trials in West Africa. Crop Science, 54(6): 2413-2422.

Nautiyal, P., & Mejia, D. 2002. Groundnut: Post-harvest operations: National Research Centre for Groundnut.

Nigar, Q., Raza, A., Majid, A., Umar, M., Naz, R. M. M., Hanif, M., . . . Zakria, M. 2024. Screening of potato germplasm for resistance to potato virus y and potato leafroll virus using DAS-ELISA. Plant Protection, 8(3): 531-538.

Pal, K. K., Dey, R., & Tilak, K. 2014. Fungal diseases of groundnut: Control and future challenges. In Future challenges in crop protection against fungal pathogens (pp. 1-29).

Paul, P. L. C. 2020. Agronomic practices increase sunflower yield in the rabi (dry) season in clay-textured, salt-affected soils of the coastal region of Bangladesh. Doctor of Philosophy. Murdoch University, Perth, Western Australia.

Richard, B., Qi, A., & Fitt, B. D. 2022. Control of crop diseases through integrated crop management to deliver climate‐smart farming systems for low‐and high‐input crop production. Plant Pathology, 71(1): 187-206.

Shahbaz, M., Akram, A., Raja, N. I., Mukhtar, T., Mehak, A., Fatima, N., . . . Abasi, F. 2023. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PloS one, 18(2): e0274679.

Soomro, S., Samoo, M. S., Jamali, A. R., & Channa, G. S. 2024. Assessing leaf rust resistance in Pakistani wheat landraces and its impact on grain yield. Plant Protection, 8(2): 269-274.

Subrahmanyam, P., McDonald, D., Waliyar, F., Reddy, L., Nigam, S., Gibbons, R., . . . Reddy, P. 1995. Screening methods and sources of resistance to rust and late leaf spot of groundnut. Information Bulletin no. 47: International Crops Research Institute for the Semi-Arid Tropics.

Thakur, S., Ghimire, S., Shrestha, S., Chaudhary, N., & Mishra, B. 2012. Resistance in groundnut genotypes to Cercospora leaf spot disease and its relation with yield. Nepal Agriculture Research Journal, 12: 63-70.

Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. 2013. Yield gap analysis with local to global relevance-A review. Field Crops Research, 143: 4-17.

Wilcoxson, R. D. 1981. Genetics of slow rusting in cereals. Phytopathology, 71(9): 989-993.

Woo, S. L., De Filippis, F., Zotti, M., Vandenberg, A., Hucl, P., & Bonanomi, G. 2022. Pea-wheat rotation affects soil microbiota diversity, community structure, and soilborne pathogens. Microorganisms, 10(2): 370.

Zanjare, S., Suryawanshi, A., Zanjare, S. S., Shelar, V., & Balgude, Y. 2023. Screening of groundnut (Arachis hypogaea L.) genotypes for identification of sources of resistance against leaf spot disease. Legume Research-An International Journal, 46(3): 288-294.

Zongo, A., Khera, P., Sawadogo, M., Shasidhar, Y., Sriswathi, M., Vishwakarma, M. K., . . . Pandey, M. K. 2017. SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnology reports, 15: 132-137.


Full Text: PDF

DOI: 10.33687/phytopath.013.02.5090

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Amir Afzal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.