Detection and Molecular Characterization of Phytoplasma Associated with Phyllody Disease on Dimorphotheca pluvialis in Egypt

Om-Hashem M. El-Banna, Ahmed A. Kheder, Mayadah A. Haj Ali


During the spring of 2021-2022, imported grown African daisy (Dimorphotheca pluvialis L. Moench) plants (Family: Asteracae) exhibiting symptoms of phyllody phytoplasma, such as phyllody and virescence of flowers, and witches' broom, were   observed in different gardens of Cairo governorate, Egypt. The disease was successfully transmitted experimentally through dodder (Cuscuta reflexa) to healthy periwinkle (Cantharanthus roseus) plants. The light and transmission electron microscopic examination revealed phytoplasma units in sieve tubes with a lot of deterioration of the cell components due to the phytoplasma infection. Nested polymerase chain reaction (nested-PCR) assay used as a key technique to identify the phytoplasma by amplifying products of 1250 bp using two pairs of primers; a universal primer pair (P1/P7) and (R16F2n/R16R2) as a specific primer pair. The Egyptian phytoplasma isolate (Dimo-Cairo) was registered with accession number “OQ676407.1” in the NCBI GenBank. MEGA sequence analysis software version 11 was used to generate the phylogenetic tree of Dimo-Cairo and to compare it with the other phytoplasma strains. The clustering of phytoplasma strains confirmed that Dimo-Cairo was associated with the 16Sr-II group (Candidatus Phytoplasma aurantifolia), and placed it close to stem curling and phyllody phytoplasma (16Sr-II-A subgroup), witches-broom phytoplasma and cactus witches-broom phytoplasma (16Sr-II-C subgroup) and Corchorus olitorius phytoplasma and Vicia faba stunting phytoplasma (16Sr-II-D subgroup). To our knowledge, this is the first report of a phytoplasma infecting Dimorphotheca pluvialis plants in Egypt


Dimorphotheca pluvialis phytoplasma; Phyllody disease; PCR; TEM; Ultrastructural changes


Abdel-Salam, A. M., N. T. Shanan, D. Z. Soliman and M. A. Ahmed. 2022. First report of Candidatus Phytoplasma Asteris infecting lily in Egypt. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 14: 381-88.

Alma, A., C. Marzachi, M. d'Aquilio and D. Bosco. 2000. Cyclamen (Cyclamen persicum L.): A dead‐end host species for 16Sr‐IB and‐IC subgroup phytoplasmas. Annals of Applied Biology, 136: 173-78.

Babaei, G., S. A. Esmaeilzadeh-Hosseini, S. Davoodi and A. Bertaccini. 2021. Occurrence and molecular characterization of a 16SrI-R subgroup phytoplasma associated with Aquilegia vulgaris phyllody disease. Journal of Plant Protection Research, 61: 222-28.

Behiry, I. S. 2018. Characterization of aster yellows phytoplasma affecting Cycas revoluta in Egypt. Journal of Plant Protection and Pathology, 9: 591-94.

Bernardini, C., S. Santi, G. Mian, A. Levy, S. Buoso, J. H. Suh, Y. Wang, C. Vincent, A. J. van Bel and R. Musetti. 2022. Increased susceptibility to chrysanthemum yellows phytoplasma infection in Atcals7ko plants is accompanied by enhanced expression of carbohydrate transporters. Planta, 256: 43.

Bertaccini, A., J. Fránová, S. Botti and D. Tabanelli. 2005. Molecular characterization of phytoplasmas in lilies with fasciation in the Czech Republic. FEMS Microbiology Letters, 249: 79-85.

Dehestani, A. and S. K. Tabar. 2007. A rapid efficient method for DNA isolation from plants with high levels of secondary metabolites. Asian Journal of Plant Sciences, 6: 977-81.

Deng, S. and C. Hiruki. 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods, 14: 53-61.

Duduk, B. and A. Bertaccini. 2011. Phytoplasma classification: Taxonomy based on 16S ribosomal gene, is it enough? Phytopathogenic Mollicutes, 1: 3-13.

El-Banna, O.-H. M. and S. H. El-Deeb. 2007. Phytoplasma associated with mango malformation disease in Egypt. Journal of Phytopathology, 35: 141-53.

El-Banna, O.-H. M., A. A. Kheder, M. A. H. Ali, A. M. Sayed and G. M. Haseeb. 2020. Biological and molecular characterization of different egyptian isolates of Spiroplasma citri. Plant Arch, 20: 6457-69.

El-Banna, O.-H. M., M. Mikhail, A. G. Farag and A. M. S. Mohammed. 2007. Detection of phytoplasma in tomato and pepper plants by electron microscopy and molecular biology based methods. Egyptian Journal of Virology, 4: 93-111.

El-Banna, O.-H. M., N. I. Toima, S. A. Youssef and A. A. Shalaby. 2015. Molecular and electron microscope evidence for an association of phytoplasma with citrus witches broom disease. International Journal of Scientific and Engineering Research, 6: 127-33.

Esmailzadeh Hosseini, S. A., M. Salehi, G. Babaie and A. Bertaccini. 2018. Characterization of a 16SrII subgroup D phytoplasma strain associated with Calendula officinalis phyllody in Iran. 3 Biotech, 8: 1-6.

Fernández, F., A. Uset, G. Baumgratz and L. Conci. 2018. Detection and identification of a 16SrIII-J phytoplasma affecting cassava (Manihot esculenta Crantz) in Argentina. Australasian Plant Disease Notes, 13: 1-5.

Fránová, J., J. Přibylová, M. Šimková, M. Navrátil and P. Válová. 2003. Electron microscopy and molecular characterization of phytoplasmas associated with strawflower yellows in the Czech Republic. European Journal of Plant Pathology, 109: 883-87.

Gad, S. M., A. A. Kheder and M. A. Awad. 2019. Detection and molecular identification of phytoplasma associated with Gazania in Egypt. Journal of Virological Sciences, 6: 12-23.

Gautam, K. K., S. Kumar and S. K. Raj. 2020. Diseases affecting gerbera cultivation and their control measures. The Journal of the Greens and Gardens, 3: 1-16.

Gharouni-Kardani, S., M. Ashnayi and A. Bertaccini. 2020. Detection of 16SrVI and 16SrIX phytoplasma groups in pot marigold and tickseed plants in northeastern Iran. Folia Microbiologica, 65: 697-703.

Gundersen, D. and I.-M. Lee. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35: 144-51.

Hunter, E. E., P. Maloney and M. Bendayan. 1993. Practical electron microscopy: A beginner's illustrated guide. Cambridge University Press.

Kamińska, M., H. Śliwa and A. Rudzińska‐Langwald. 2001. The association of phytoplasma with stunting, leaf necrosis and witches’ broom symptoms in magnolia plants. Journal of Phytopathology, 149: 719-24.

Kilic, N., H. Ayvacı, M. E. Güldür and M. Dikilitas. 2022. First report of ‘Candidatus Phytoplasma australasia’-related strain’(16SrII-D) in Pyracantha angustifolia (narrowleaf firethorn). Australasian Plant Disease Notes, 18: 1-9.

Lee, G.-W., T.-W. Han, S. K. Lee and S.-S. Han. 2022. Candidatus phytoplasma malaysianum (16SrXXXII) associated with Elaeocarpus sylvestris decline in South Korea. Forest Science and Technology, 18: 7-13.

Lee, I.-M., R. E. Davis and D. E. Gundersen-Rindal. 2000. Phytoplasma: Phytopathogenic mollicutes. Annual Reviews in Microbiology, 54: 221-55.

Lee, S.-H., C.-e. Kim and B.-J. Cha. 2012. Migration and distribution of graft-inoculated jujube witches'-broom phytoplasma within a Cantharanthus roseus plant. The Plant Pathology Journal, 28: 191-96.

Maust, B., F. Espadas, C. Talavera, M. Aguilar, J. M. Santamaría and C. Oropeza. 2003. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology, 93: 976-81.

Mikhail, M., O.-H. El-Banna, E. Khalifa and A. Mohammed. 2012. Detection and control of rose phytoplasma phyllody disease. Egyptian Journal of Phytopathology, 40: 87-100.

Mitra, S., P. Debnath, N. S. Radhika, E. P. Koshy and G. P. Rao. 2020. Aster yellows phytoplasmas association with a little leaf disease of papaya in Kerala, India. Phytopathogenic Mollicutes, 10: 188-93.

Mokbel, S. A. 2020. Identification, molecular characterization of a phytoplasma affecting dodonaea viscosa plants and determination of some biochemical constituents in leaves. Current Science International, 9: 517-28.

Montano, H. G., A. Bertaccini, J. P. Pimentel, S. Paltrinieri and N. Contaldo. 2014. Erigeron (Conyza) bonariensis, a host of ‘Candidatus Phytoplasma fraxini’-related strain in Brazil. Phytopathogenic Mollicutes, 4: 72-76.

Muhire, B. M., A. Varsani and D. P. Martin. 2014. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. Plos One, 9: e108277.

Randall, J. J., P. W. Bosland and S. F. Hanson. 2011. Brote grande, a new phytoplasma associated disease of chile peppers in the desert southwest. Plant Health Progress, 12: 18-26.

Ranebennur, H., K. Rawat, A. Rao, P. Kumari, V. C. Chalam, N. Meshram and G. Rao. 2022. Transmission efficiency of a ‘Candidatus Phytoplasma australasia ‘(16SrII-D) related strain associated with sesame phyllody by dodder, grafting and leafhoppers. European Journal of Plant Pathology, 164: 193-208.

Ravi, M., G. P. Rao, N. M. Meshram and R. Sundararaj. 2022. Genetic diversity of phytoplasmas associated with several Bamboo Species in India. Forest Pathology, 52: e12741.

Salehi, E., M. Salehi, M. M. Faghihi and A. Bertaccini. 2022. Molecular characterization and transmission of a'Candidatus Phytoplasma asteris' strain associated with pot marigold phyllody in Iran. Journal of Plant Pathology, 104: 1457-64.

Salehi, M., K. Izadpanah, M. Siampour, R. Firouz and E. Salehi. 2009. Molecular characterization and transmission of safflower phyllody phytoplasma in Iran. Journal of Plant Pathology, 91: 453-58.

Salehi, M., N. Nejat, A. R. Tavakkoli and K. A. Izadpanah. 2005. Reaction of citrus cultivars to Candidatus phytoplasma aurantifolla in Iran. Iranian Journal of Plant Pathology, 41: 363-76.

Shreenath, Y., A. Bahadur, H. Ranebennur and G. P. Rao. 2021. Characterization of ‘Candidatus Phytoplasma asteris’-related strain association with leaf yellowing of Wrightia antidysenterica (Arctic Snow) in Tripura, India. Australasian Plant Disease Notes, 16: 13-21.

Sinclair, W. A., H. M. Griffiths and R. E. Davis. 1996. Ash yellows and lilac witches'-broom: phytoplasmal diseases of concern in forestry and horticulture. Plant Disease, 80: 468-75.

Singh, M., Y. Chaturvedi, A. K. Tewari, G. P. Rao, S. K. Snehi, S. K. Raj and M. S. Khan. 2011. Diversity among phytoplasmas infecting ornamental plants grown in India. Bulletin of Insectology, 64: 69-70.

Tamura, K., G. Stecher and S. Kumar. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38: 3022-27.

Uehara, T., M. Tanaka, T. Shiomi, S. Namba, T. Tsuchizaki and I. Matsuda. 1999. Histopathological studies on two symptom types of phytoplasma associated with lettuce yellows. Japanese Journal of Phytopathology, 65: 465-69.

Viczián, O., J. Fodor, J. Ágoston and E. Mergenthaler. 2023. First report of ‘Candidatus Phytoplasma asteris’ associated with cyclamen little leaf in Hungary. Plant Disease, 107: 2515.

Wei, W. and Y. Zhao. 2022. Phytoplasma taxonomy: Nomenclature, classification, and identification. Biology, 11: 1119.

Xue, C., Z. Liu, L. Dai, J. Bu, M. Liu, Z. Zhao, Z. Jiang, W. Gao and J. Zhao. 2018. Changing host photosynthetic, carbohydrate, and energy metabolisms play important roles in phytoplasma infection. Phytopathology, 108: 1067-77.

Full Text: PDF

DOI: 10.33687/phytopath.013.01.5065


  • There are currently no refbacks.

Copyright (c) 2024 Om-Hashem M. El-Banna, Ahmed A. Kheder, Mayadah A. Haj Ali

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.