Role of Arbuscular Mycorrhiza (AM) Fungi and Lignin in Biological Control against Vascular Fusarium Wilt Disease

Mahdi S. Yasir, Zainab K. Taha, Fadia F. Hassan, Thamer A. A. Muhsen


The current study aimed to assess the biological efficacy of the triple arbuscular mycorrhiza (AM) mixture of fungi Glomus etunicatum, G. leptotichum and Rhizophagus intraradices, and mix it with organic matter (O) and pathogenic fungi Fusarium oxysporum f.sp.lycopersici by using voyeurism in the plastic house in the growth of the tomato plant after four and eight weeks of cultivation. The results were shown after the treatment of the tomato plant in agriculture with the mixture of mycorrhiza and the pathogenic fungi and organic matter were treated with the mixture of mycorrhiza, organic matter and pathogenic fungi together. The effect of mycorrhiza and organic matter interference on the increase in the percentage of the lignin after eight weeks was very clear. The effect of the mycorrhiza mixture, organic matter and the pathogenic fungi in the percentage of disease incidence on the leaves and roots of the tomato plant, a relative decrease in infection was observed after two and four weeks of cultivation and the percentage of the death of the plant gestures contaminated with the pathogen was low after four weeks transplantation as a result of the effect of the mycorrhiza mixture and organic matter on it


Arbuscular Mycorrhiza (AM); Biological control; Fungi; Lignin; Vascular wilt disease


Abohatem, M., F. Chakrafi, F. Jaiti, A. Dihazi and M. Baaziz. 2011. Arbuscular mycorrhizal fungi limit incidence of Fusarium oxysporum f. sp. albedinis on date palm seedlings by increasing nutrient contents, total phenols and peroxidase activities. The Open Horticulture Journal, 4: 10-16.

Alsheikhly, A. H. and H. A. Jabbar. 2013. Role of organic matter and glomalin in the formation and stabilization of soil aggregate. Euphrates Journal of Agricultural Science, 5: 144-31.

Amran, M. 2005. Pathogenicity test of Fusarium verticillioides on corn and formulation of Bacillus subtilis BS10 for seed treatment as biological control agent. Place Published. pp.474-81.

Bhat, R. A., M. A. Dervash, M. A. Mehmood, B. M. Skinder, A. Rashid, J. I. A. Bhat, D. V. Singh and R. Lone. 2017. Mycorrhizae: A sustainable industry for plant and soil environment. Place Published. pp.473-502.

Booth, C. 1971. The Genus Fusarium. Commonwealth Mycological Institute: Kew, UK.

Castañeda-Gómez, L., J. Powell, E. Pendall and Y. Carrillo. 2022. Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions. Biogeochemistry, 160: 69-87.

Cavagnaro, T. R., L. Jackson, J. Six, H. Ferris, S. Goyal, D. Asami and K. Scow. 2006. Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant and Soil, 282: 209-25.

Davies Jr, F. T. and R. G. Linderman. 1991. Short term effects of phosphorus and VA-mycorrhizal fungi on nutrition, growth and development of Capsicum annuum L. Scientia Horticulturae, 45: 333-38.

Dewan, M. and K. Sivasithamparam. 1988. Identity and frequency of occurrence of Trichoderma spp. in roots of wheat and rye-grass in Western Australia and their effect on root rot caused by Gaeumannomyces graminis var. tritici. Plant and Soil, 109: 93-101.

El-Batanony, N. H., O. N. Massoud, M. M. Mazen and M. M. A. El-Monium. 2007. The inhibitory effects of cultural filtrates of some wild Rhizobium spp. on some faba bean root rot pathogens and their antimicrobial synergetic effect when combined with Arbuscular mycorrhiza (Am). World Journal of Agricultural Sciences, 3: 721-30.

Gerdemann, J. W. and T. H. Nicolson. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological society, 46: 235-44.

Hage-Ahmed, K., J. Krammer and S. Steinkellner. 2013. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza, 23: 543-50.

Hathout, T. A., M. S. Felaifel, S. M. El-Khallal, H. H. Abo-Ghalia and R. A. Gad. 2010. Biocontrol of Phaseolus vulgaris root rot using arbuscular mycorrhizae. Egyptian Journal of Agricultural Research, 88: 15-29.

Hemissi, I., S. Gargouri and B. Sifi. 2011. Attempt of wheat protection against Fusarium culmorum using Rhizobium isolates. Tunisian Journal of Plant Protection, 6: 75-86.

Jingjing, L. 2011. Isolation of lignin from wood, Saimaa University of Applied Sciences.

Lao, R., Y. Guo, W. Hao, W. Fang, H. Li, Z. Zhao and T. Li. 2023. The role of lignin in the compartmentalization of cadmium in maize roots is enhanced by mycorrhiza. Journal of Fungi, 9: 852.

Leslie, J. F. and B. A. Summerell. 2008. The Fusarium Laboratory Manual. John Wiley and Sons. p. 388.

Lin, H., M. Wang, Y. Chen, K. Nomura, S. Hui, J. Gui, X. Zhang, Y. Wu, J. Liu and Q. Li. 2022. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 8: 8723.

Lin, P., M. Zhang, M. Wang, Y. Li, J. Liu and Y. Chen. 2021. Inoculation with arbuscular mycorrhizal fungus modulates defense-related genes expression in banana seedlings susceptible to wilt disease. Plant Signaling and Behavior, 16: 188.

Liu, M., Z. Zhao, L. Chen, L. Wang, L. Ji and Y. Xiao. 2020. Influences of arbuscular mycorrhizae, phosphorus fertiliser and biochar on alfalfa growth, nutrient status and cadmium uptake. Ecotoxicology and Environmental Safety, 196: 110537.

Louis, I. and G. Lim. 1988. Differential response in growth and mycorrhizal colonisation of soybean to inoculation with two isolates of Glomus clarum in soils of different P availability. Plant and Soil, 112: 37-43.

Machado, T. O., S. J. Beckers, J. Fischer, B. Müller, C. Sayer, P. H. de Araújo, K. Landfester and F. R. Wurm. 2020. Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants. Biomacromolecules, 21: 2755-63.

Maghribi, S., Y. Hammad and B. Rezk. 2018. Controlling fusarium wilt of tomato using some mycorrhizal fungi and Rhizobium leguminosarum. Jordan Journal of Agricultural Science, 14: 133-45.

Mahmood, I. and R. Rizvi. 2010. Mycorrhiza and organic farming. Asian Journal of Plant Sciences, 9: 241-48.

Mohammadi, K., S. Khalesro, Y. Sohrabi and G. Heidari. 2011. A review: Beneficial effects of the mycorrhizal fungi for plant growth. Journal of Applied Environmental and Biological Sciences, 1: 310-19.

Morgan, J. A. W., G. D. Bending and P. J. White. 2005. Biological costs and benefits to plant–microbe interactions in the rhizosphere. Journal of Experimental Botany, 56: 1729-39.

Nesmith, W. C., J. R. Hartman and C. A. Kaiser. 2014. Tomato Wilt Problems. In: Plant Pathology Extension, College of Agriculture, University of Kentucky.

Plassard, C., A. Becquer and K. Garcia. 2019. Phosphorus transport in mycorrhiza: How far are we? Trends in Plant Science, 24: 794-801.

Sharma, A. and V. Mehta. 2019. Mycorrhizal Fungi. Acta Scientific Agriculture, 3: 96-97.

Sun, W. and M. H. Shahrajabian. 2023. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants, 12: 3101.

Trouvelot, A. 1986. Measure du taux de mycorrhization d'un systeme radiculaire. Recherche de methods d'estimation ayant une signification fonctionnelle. In, Physiological and Genetical Aspects of Mycorrhizae INRA Press: Paris, France.

Wang, L., S. Wang, G. Luo, J. Zhang, Y. Chen, H. Chen and X. Cheng. 2022. Evaluation of the production potential of mung bean cultivar “Zhonglv 5”. Agronomy, 12: 707.

Full Text: PDF

DOI: 10.33687/phytopath.013.01.5037


  • There are currently no refbacks.

Copyright (c) 2024 Fadia Falah Hassan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.