Effectiveness of Bacillus pseudomycoides Strain for Biocontrol of Early Blight on Tomato Plants

Ahmed A. ElSharawy, Nerhan A. Eid, Azza M.Y. Ebrahiem

Abstract


Alternaria early blight is an air-borne and soil-borne pathogen that cause losses and damages that can reach up to 80% in tomato production. In our work, the immediate antagonistic effect of Bacillus pseudomycoides was inspected against Alternaria early blight of tomato. Bacillus pseudomycoides (Bp1) (OQ629426) gave inhibition efficacy against A. solani growth, being, 74.22 %.  Invitro, Bp1 had the capability to produce the endogenous plant auxin (IAA) it was 18.9 (µg/100 mL), the quantity of GA 9.4 (µg/100 mL), 95.8 μ Deferroxamine mesylate.  Tomato plants treated with B. pseudomycoides registered the least disease severity, being 50 and 40 % in Mancozeb + ALS and Bp1+ ALS treatments with high efficiency to control the severity between 75 and 100 % respectively. Tomato plants treated with B. pseudomycoides showed improved growth characteristics as compared with the untreated control. Plants with bacterial treatment conferred 45.6 cm shoot length, 2.9 (g∕plant) fresh weight and 0.7 (g∕plant) Dry weight. The highest increase in the activity of polyphenol oxidase (PPO) and peroxidase (POD) was observed in the infected leaves of tomato plants treated with B. pseudomycoides Bp1 (T4) (4.6, 6.9 m/g f. w.) respectively, followed by treatment of plants with Mancozeb (T3) (3.9, 5.4 m/g f. w.) respectively, compared to other treatments. This study suggested that B. pseudomycoides is a promising biocontrol agent against Alternaria early blight. This bacterium may represent an important source of potential antimicrobial bio-agent against Alternaria early blight disease, also it may play a role in the development of integrated control programs in future studies


Keywords


Tomato plant; Solanum lycopersicum; Early Blight; Alternaria solani; Bacillus pseudomycoides; biocontrol

References


Ahmed, W., G. Zhou, J. Yang, S. Munir, A. Ahmed, Q. Liu, Z. Zhao and G. Ji. 2022. Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco. Egyptian Journal of Biological Pest Control, 32: 1-14.

Akram, W., T. Anjum and B. Ali. 2015. Co-cultivation of tomato with two Bacillus strains: Effects on growth and yield. Journal of Animal and Plant Sciences, 25: 1644-51.

Alexander, D. and D. Zuberer. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and fertility of soils, 12: 39-45.

Alhaithloul, H. A. S., M. S. Attia and M. A. Abdein. 2019. Dramatic biochemical and anatomical changes in eggplant due to infection with Alternaria solani causing early blight disease. International Journal of Botany Studies, 4: 55-60.

Ali, S., S. Hameed, A. Imran, M. Iqbal and G. Lazarovits. 2014. Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microbial Cell Factories, 13: 1-15.

Almoneafy, A. A., K. U. Kakar, Z. Nawaz, A. A. Alameri and M. A. El-Zumair. 2022. Economic and eco-friendly alternatives for the efficient and safe management of wheat diseases. In, Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management Springer Nature.

Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic acids research, 25: 3389-402.

Anand, R., S. Kulothungan, S. Karthika, R. Sentila and K. Bhuvaneswari. 2009. Assay of chitinase and β-1, 3 glucanase in Gossypium hirsutum seedlings by Trichoderma spp. against Fusarium oxysporum. International Journal of Plant Sciences, 4: 255-58.

Andrić, S., T. Meyer and M. Ongena. 2020. Bacillus responses to plant-associated fungal and bacterial communities. Frontiers in microbiology, 11: 1350.

Andrić, S., A. Rigolet, A. Argüelles Arias, S. Steels, G. Hoff, G. Balleux, L. Ongena, M. Höfte, T. Meyer and M. Ongena. 2023. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. The ISME Journal, 17: 263-75.

Atia, M. 2005. Induction of resistance to alternaria leaf blight (Alternaria cucumerina) in melon plants by Dl-ß-amino-n-butyric acid. Environmental Research, 6: 85-104.

Attia, M. S., G. S. El-Sayyad, M. Abd Elkodous and A. I. El-Batal. 2020. The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae, 266: 109289.

Awan, Z. A. and A. Shoaib. 2019. Combating early blight infection by employing Bacillus subtilis in combination with plant fertilizers. Current Plant Biology, 20: 100125.

Awan, Z. A., A. Shoaib, M. S. Iftikhar, B. L. Jan and P. Ahmad. 2022. Combining biocontrol agent with plant nutrients for integrated control of tomato early blight through the modulation of physio-chemical attributes and key antioxidants. Frontiers in microbiology, 13: 807699.

Beneduzi, A., A. Ambrosini and L. M. Passaglia. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and molecular biology, 35: 1044-51.

Bric, J. M., R. M. Bostock and S. E. Silverstone. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57: 535-38.

Cawoy, H., W. Bettiol, P. Fickers and M. Ongena. 2011. Bacillus-based biological control of plant diseases. In, Pesticides in the Modern World-Pesticides Use and Management Intech Open.

Chaerani, R. and R. E. Voorrips. 2006. Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. Journal of General Plant Pathology, 72: 335-47.

Choudhary, D. K. and B. N. Johri. 2009. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiological research, 164: 493-513.

Courtois, S., Å. Frostegård, P. Göransson, G. Depret, P. Jeannin and P. Simonet. 2001. Quantification of bacterial subgroups in soil: Comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environmental microbiology, 3: 431-39.

Daura-Pich, O., I. Hernandez, L. Pinyol-Escala, J. M. Lara, S. Martínez-Servat, C. Fernandez and B. López-García. 2020. No antibiotic and toxic metabolites produced by the biocontrol agent Pseudomonas putida strain B2017. FEMS microbiology letters, 367: fnaa075.

Deshmukh, H., C. Deokar, K. Raghuwanshi, P. Khaire and P. Brahmane. 2020. Efficacy of different fungicides against the Alternaria solani under in vitro conditions. Journal of Pharmacognosy and Phytochemistry, 9: 1957-60.

Donmez, M. F., B. Uysal, E. Demırcı, S. Ercisli and R. Cakmakcı. 2015. Biological control of root rot disease caused by Rhizoctonia solani Kühn on potato and bean using antagonist bacteria. Acta Scientiarum Polonorum Hortorum Cultus, 14: 29-40.

Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics, 11: 1-42.

El-Tanany, M., M. Hafez, G. Ahmed and M. El-Mageed. 2018. Efficiency of biotic and abiotic inducers for controlling tomato early blight. Middle East Journal, 7: 650-70.

Elhadidy, A. E. 2019. Performance of some new bioformulations against tomato fusarium wilt. Egyptian Journal of Desert Research, 69: 1-19.

Feng, Y., Q. Li, L. Kong and X. Zheng. 2011. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Molecular Biology Reports, 38: 291-99.

Gaete, A., D. Mandakovic and M. González. 2020. Isolation and identification of soil bacteria from extreme environments of Chile and their plant beneficial characteristics. Microorganisms, 8: 1213.

Gainza, F., I. Opazo and C. Muñoz. 2015. Graft incompatibility in plants: Metabolic changes during formation and establishment of the rootstock/scion union with emphasis on Prunus species. Chilean Journal of Agricultural Rsesearch, 75: 28-34.

Gohil, R. B., V. H. Raval, R. R. Panchal and K. N. Rajput. 2022. Plant growth-promoting activity of Bacillus sp. PG-8 isolated from fermented panchagavya and its effect on the growth of Arachis hypogea. Frontiers in Agronomy, 4: 11.

Hassan, E. A., N. M. Balabel, A. E. Ahmed, N. A. Eid and E. Ramadan. 2017. Relationship between Ralstonia solanacearum and bioagents recovered from different habitats. International Journal of Scientific Engineering and Research, 8: 91-104.

He, D.-C., M.-H. He, D. M. Amalin, W. Liu, D. G. Alvindia and J. Zhan. 2021. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens, 10: 1311-26.

Heidari, M. and A. Golpayegani. 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11: 57-61.

Imran, M., E. F. Ali, S. Hassan, K. A. Abo-Elyousr, N. M. Sallam, M. M. M. Khan and M. W. Younas. 2021. Characterization and sensitivity of Botrytis cinerea to benzimidazole and succinate dehydrogenase inhibitors fungicides, and illustration of the resistance profile. Australasian Plant Pathology, 50: 589-601.

Jinal, N. H. and N. Amaresan. 2020. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Archives of Microbiology, 202: 1785-94.

Khalil, M. E. and R. E. Adbelghany. 2021. Effectiveness of some biotic and abiotic agents to control tomato early blight disease caused by Alternaria solani. Egyptian Journal of Phytopathology, 49: 114-28.

Köhl, J., R. Kolnaar and W. J. Ravensberg. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in plant science, 10: 845.

Larkin, R. P. 2020. Biological control of soilborne diseases in organic potato production using hypovirulent strains of Rhizoctonia solani. Biological Agriculture and Horticulture, 36: 119-29.

Lourenço Jr, V., A. Moya, F. González-Candelas, I. Carbone, L. A. Maffia and E. S. Mizubuti. 2009. Molecular diversity and evolutionary processes of Alternaria solani in Brazil inferred using genealogical and coalescent approaches. Phytopathology, 99: 765-74.

Mandal, S. M., D. Chakraborty and S. Dey. 2010. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling and Behavior, 5: 359-68.

Mari, M., M. Guizzardi and G. Pratella. 1996. Biological control of gray mold in pears by antagonistic bacteria. Biological Control, 7: 30-37.

Maxwell, D. and D. Bateman. 1967. Changes in the activities of some oxidases in extracts of Rhizoctonia-infected bean hypocotyls in relation to lesion maturation. Phytopathology, 57: 132-36.

Miao, S., J. Liang, Y. Xu, G. Yu and M. Shao. 2023. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. Journal of Cellular Physiology: 1-15.

Miranda, C. A., O. B. Martins and M. M. Clementino. 2008. Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis. Antonie Van Leeuwenhoek, 93: 297-304.

Mirzaei, M., A. Ladan Moghadam, L. Hakimi and E. Danaee. 2020. Plant growth promoting rhizobacteria (PGPR) improve plant growth, antioxidant capacity, and essential oil properties of lemongrass (Cymbopogon citratus) under water stress. Iranian Journal of Plant Physiology, 10: 3155-66.

Mitter, N., A. Srivastava, Renu, S. Ahamad, A. Sarbhoy and D. Agarwal. 2002. Characterization of gibberellin producing strains of Fusarium moniliforme based on DNA polymorphism. Mycopathologia, 153: 187-93.

Morgan, M. C., M. Boyette, C. Goforth, K. V. Sperry and S. R. Greene. 2009. Comparison of the biolog omniLog identification system and 16S ribosomal RNA gene sequencing for accuracy in identification of atypical bacteria of clinical origin. Journal of Microbiological Methods, 79: 336-43.

Moročko, I. 2006. Characterization of the strawberry pathogen Gnomonia fragariae, and biocontrol possibilities, Swedish University of Agricultural Sciences.

Moustafa, M., A. ALkolaly and H. El-Dakar. 2018. Impact of Bioagents and organic acids on Alternaria solani, the causal organism of tomato early blight disease and their side effect assessment. Global Journal of Advanced Research, 5: 234-42.

Nashwa, S. M. and K. A. Abo-ElyouSr. 2012. Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Protection Science, 48: 74-79.

Nekoval, S., A. Zakharchenko, A. Sadovaya, A. Churikova and I. Fedoryanskaya. 2022. Assessment of mutant tomato lines as a starting material for breeding varieties resistant to Alternaria alternata. Saudi Journal of Biological Sciences, 29: 1061-72.

Ongena, M., P. Jacques, Y. Touré, J. Destain, A. Jabrane and P. Thonart. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied microbiology and biotechnology, 69: 29-38.

Ordookhani, K. and M. Zare. 2011. Effect of Pseudomonas, Azotobacter and arbuscular mycorrhiza fungi on lycopene, antioxidant activity and total soluble solid in tomato (Lycopersicon esculentum F1 Hybrid, Delba). Advances in Environmental Biology, 5: 1290-94.

Padró, M. D. A., E. Caboni, K. A. S. Morin, M. A. M. Mercado and V. Olalde-Portugal. 2021. Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ, 9: e10984.

Pal, K. K. and B. M. Gardener. 2006. Biological control of plant pathogens. The Plant Health Instructor, 2: 1-25.

Pane, C. and M. Zaccardelli. 2015. Evaluation of Bacillus strains isolated from solanaceous phylloplane for biocontrol of Alternaria early blight of tomato. Biological Control, 84: 11-18.

Phanse, N., P. Rathore, B. Patel and A. Nayarisseri. 2013. Characterization of an industrially important alkalophilic bacterium, Bacillus agaradhaerens strain nandiniphanse5. Journal of Pharmacy Research, 6: 543-50.

Prakash, N., K. Vishunavat, G. T. Khan and P. Prasad. 2021. SA, ABA and Pseudomonas fluorescens elicit defense responses in tomato against Alternaria blight. Journal of Plant Biochemistry and Biotechnology, 30: 13-25.

Rabbee, M. F., M. S. Ali, J. Choi, B. S. Hwang, S. C. Jeong and K.-h. Baek. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24: 1046.

Rashad, Y. M., S. A. Abdalla and M. M. Sleem. 2022. Endophytic Bacillus subtilis SR22 triggers defense responses in tomato against rhizoctonia root rot. Plants, 11: 2051.

Ren, X.-M., S.-J. Guo, W. Tian, Y. Chen, H. Han, E. Chen, B.-L. Li, Y.-Y. Li and Z.-J. Chen. 2019. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Frontiers in microbiology, 10: 1455-67.

Rubén, D., P. Gullon, M. Pateiro, P. Munekata, W. Zhang and J. Lorenzo. 2020. Tomato as potential source of natural additives for meat industry: A review. Antioxidants, 9: 73-89.

Saltveit, M. 2015. The three responses of plant tissue to wounding. Place Published. pp.13-20.

Sansinenea, E. 2019. Bacillus spp.: As plant growth-promoting bacteria. In, Secondary metabolites of plant growth promoting rhizomicroorganisms: Discovery and applications Springer Nature.

Saraf, M., U. Pandya and A. Thakkar. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological research, 169: 18-29.

Shafi, J., H. Tian and M. Ji. 2017. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology and Biotechnological Equipment, 31: 446-59.

Sharma, A., V. Kumar, B. Shahzad, M. Tanveer, G. P. S. Sidhu, N. Handa, S. K. Kohli, P. Yadav, A. S. Bali and R. D. Parihar. 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1: 1-16.

Sharma, P., S. R. Sharma, M. Sindhu and A. Kaur. 2004. A detached leaf technique for evaluation of resistance in cabbage and cauliflower against three major pathogens. Indian journal of plant pathology, 22: 112-14.

Simonetti, E., M. A. Carmona, M. M. Scandiani, A. F. Garcia, A. Luque, O. S. Correa and K. B. Balestrasse. 2012. Evaluation of indigenous bacterial strains for biocontrol of the frogeye leaf spot of soya bean caused by Cercospora sojina. Letters in Applied Microbiology, 55: 170-73.

Song, W., L. Zhou, C. Yang, X. Cao, L. Zhang and X. Liu. 2004. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop protection, 23: 243-47.

Sowmya, V. and R. Chandra. 2021. In vitro and in vivo efficacy of chemical fungicides against early blight of tomato (Solanum lycopersicum L.) incited by Alternaria solani (Ell. & Mart.). Journal of Pharmacognosy and Phytochemistry, 10: 833-37.

Sun, X., R. Zhang, M. Ding, Y. Liu and L. Li. 2021. Biocontrol of the root‐knot nematode Meloidogyne incognita by a nematicidal bacterium Pseudomonas simiae MB751 with cyclic dipeptide. Pest management science, 77: 4365-74.

Thesaurus, C., B. Portal, C. Compendium, H. S. Tool, P. K. Bank and T. Cases. 2019. Unequivocal evidence associating environmental contaminants and pollutants with human morbidity and ecological degradation. In, A Handbook of Environmental Toxicology: Human Disorders and Ecotoxicology CABI Digital Library.

Townsend, G. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27: 340-43.

Tozlu, E., N. Tekiner, R. Kotan and S. Örtücü. 2018. Investigation on the biological control of Alternaria alternata. Indian Journal of Agricultural Sciences, 88: 1241-47.

Urrea, R., L. Cabezas, R. Sierra, M. Cárdenas, S. Restrepo and P. Jiménez. 2011. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. Journal of Applied Microbiology, 111: 707-16.

Vakalounakis, D. J. 1983. Evaluation of tomato cultivars for resistance to Alternaria blight. Annals of applied Biology, 102: 138-39.

Vishal, B. and P. P. Kumar. 2018. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Frontiers in plant science, 9: 838-46.

Wei, L., J. Yang, W. Ahmed, X. Xiong, Q. Liu, Q. Huang and G. Ji. 2021. Unraveling the association between metabolic changes in inter-genus and intra-genus bacteria to mitigate clubroot disease of Chinese cabbage. Agronomy, 11: 2424.

Wu, X., H. Li, Y. Wang and X. Zhang. 2020. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Science and Technology, 30: 351-69.

Yang, L.-N., M.-H. He, H.-B. Ouyang, W. Zhu, Z.-C. Pan, Q.-J. Sui, L.-P. Shang and J. Zhan. 2019. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology, 19: 1-10.

Yazici, S., Y. Yanar and I. Karaman. 2011. Evaluation of bacteria for biological control of early blightdisease of tomato. African Journal of Biotechnology, 10: 1573-77.

Yi, Y., P. Luan, K. Wang, G. Li, Y. Yin, Y. Yang, Q. Zhang and Y. Liu. 2022. Antifungal activity and plant growth-promoting properties of Bacillus mojovensis B1302 against Rhizoctonia Cerealis. Microorganisms, 10: 1682-98.

Zhang, C., M. Imran, L. Xiao, Z. Hu, G. Li, F. Zhang and X. Liu. 2021. Difenoconazole resistance shift in Botrytis cinerea from tomato in China associated with inducible expression of CYP51. Plant Disease, 105: 400-07.

Zhou, H., Z.-h. Ren, X. Zu, X.-y. Yu, H.-j. Zhu, X.-j. Li, J. Zhong and E.-m. Liu. 2021. Efficacy of plant growth-promoting bacteria Bacillus cereus YN917 for biocontrol of rice blast. Frontiers in microbiology, 12: 684888.


Full Text: PDF

DOI: 10.33687/phytopath.012.03.4632

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Ahmed ElSharawy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.