Induction of PR-Proteins and Oxidative Isozymes in Tomato Genotypes Resistant and Susceptible to Tomato Mosaic Virus and Tomato Spotted wilt Virus
Abstract
Keywords
References
Agrios, G. 1998. Tomato Spotted wilt Virus. In, Plant pathology. Elsevier Academic Press. Burlington, MA. USA.
Aseel, D. G., R. A. Madian, S. A. Aggag and M. A. Elseehy. 2021. Evaluation of some defensin genes against ToMV in different tomato cultivars using pathogenesis related protein genes. Journal of microbiology, biotechnology and food sciences, 9: 29-33. https://doi.org/10.15414/jmbfs.2019.9.1.29-33
Baaziz, M., F. Aissam, Z. Brakez, K. Bendiab, I. El Hadrami and R. Cheikh. 1994. Electrophoretic patterns of acid soluble proteins and active isoforms of peroxidase and polyphenoloxidase typifying calli and somatic embryos of two reputed date palm cultivars in Morocco. Euphytica, 76: 159-68. https://doi.org/10.1007/BF00022160
Biswas, S., N. Pandey and M. Rajik. 2012. Inductions of defense response in tomato against Fusarium wilt through inorganic chemicals as inducers. Journal of Plant Pathology and Microbiology, 3: 2-7.
Canady, M., M. Stevens, M. Barineau and J. Scott. 2001. Tomato spotted wilt virus (TSWV) resistance in tomato derived from Lycopersicon chilense Dun. LA 1938. Euphytica, 117: 19-25. https://doi.org/10.1023/A:1004089504051
Carvalho, D. d., R. A. Ferreira, L. M. d. Oliveira, A. F. d. Oliveira and R. C. R. Gemaque. 2006. Proteins and isozymes electroforesis in seeds of Copaifera langsdorffii Desf. (leguminosae caesalpinioideae) artificially aged. Revista Árvore, 30: 19-24. https://doi.org/10.1590/S0100-67622006000100003
Chatterjee, A. and S. K. Ghosh. 2008. Alterations in biochemical components in mesta plants infected with Yellow vein mosaic disease. Brazilian journal of plant physiology, 20: 267-75. https://doi.org/10.1590/S1677-04202008000400002
Chittoor, J. M., J. E. Leach and F. F. White. 1999. Induction of peroxidase during defense against pathogens. In, Pathogenesis-related proteins in plants. CRC Press. Boca Raton, FL, USA.
Christov, I., D. Stefanov, T. Velinov, V. Goltsev, K. Georgieva, P. Abracheva, Y. Genova and N. Christov. 2007. The symptomless leaf infection with Grapevine leafroll associated virus 3 in grown in vitro plants as a simple model system for investigation of viral effects on photosynthesis. Journal of Plant Physiology, 164: 1124-33. https://doi.org/10.1016/j.jplph.2005.11.016
Elvira, M. I., M. M. Galdeano, P. Gilardi, I. García-Luque and M. T. Serra. 2008. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of Pepper mild mottle virus (PMMoV) in Capsicum chinense L 3 plants. Journal of experimental botany, 59: 1253-65. https://doi.org/10.1093/jxb/ern032
FAO. 2021. World Food and Agriculture-Statistical Yearbook 2021. Food and Agriculture Organization. Rome, Italy.
Gill, U., J. W. Scott, R. Shekasteband, E. Ogundiwin, C. Schuit, D. M. Francis, S.-C. Sim, H. Smith and S. F. Hutton. 2019. Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. Theoretical and Applied Genetics, 132: 1543-54. https://doi.org/10.1007/s00122-019-03298-0
Golshani, F., B. A. Fakheri, E. Behshad and R. M. Vashvaei. 2015. PRs proteins and their mechanism in plants. Biological Forum.
Green, S. K. 1991. Guidelines for Diagnostic Work in Plant Virology. Asian Vegetable Research and Development Center: Technical Bulletin.
Gupta, R., C. W. Min, S. W. Kim, J. S. Yoo, A.-R. Moon, A.-Y. Shin, S.-Y. Kwon and S. T. Kim. 2020. A TMT-based quantitative proteome analysis to elucidate the TSWV induced signaling cascade in susceptible and resistant cultivars of Solanum lycopersicum. Plants, 9: 290. https://doi.org/10.3390/plants9030290
Hammond-Kosack, K. E. and J. Jones. 1996. Resistance gene-dependent plant defense responses. The Plant Cell, 8: 1773. https://doi.org/10.2307/3870229
Jockusch, H. 1966. The role of host genes, temperature and polyphenoloxidase in the necrotization of TMV infected tobacco tissue. Journal of Phytopathology, 55: 185-92. https://doi.org/10.1111/j.1439-0434.1966.tb02222.x
Kavitha, R. and S. Umesha. 2008. Regulation of defense-related enzymes associated with bacterial spot resistance in tomato. Phytoparasitica, 36: 144-59. https://doi.org/10.1007/BF02981327
Keen, N. 1992. The molecular biology of disease resistance. Plant Molecular Biology, 19: 109-22. https://doi.org/10.1007/BF00015609
Kumar, A., P. Mali and V. Manga. 2010. Changes of some phenolic compounds and enzyme activities on infected pearl millet caused by Sclerospora graminicola. International Journal of plant physiology and biochemistry, 2: 6-10.
Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33: 1870-74. https://doi.org/10.1093/molbev/msw054
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-85. https://doi.org/10.1038/227680a0
Li, J., H. Huang, M. Zhu, S. Huang, W. Zhang, S. P. Dinesh-Kumar and X. Tao. 2019. A plant immune receptor adopts a two-step recognition mechanism to enhance viral effector perception. Molecular plant, 12: 248-62. https://doi.org/10.1016/j.molp.2019.01.005
Li, L. and J. C. Steffens. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215: 239-47. https://doi.org/10.1007/s00425-002-0750-4
Madhusudhan, K., B. Srikanta, M. Shylaja, H. Prakash and H. Shetty. 2009. Changes in antioxidant enzymes, hydrogen peroxide, salicylic acid and oxidative stress in compatible and incompatible host-tobamovirus interaction. Journal of Plant Interactions, 4: 157-66. https://doi.org/10.1080/17429140802419516
Mahfouze, H. A., S. A. Mahfouze and M. E.-S. Ottai. 2022. Molecular characterization of markers linked to Tomato spotted wilt virus and Tomato mosaic virus resistance loci in tomato. Journal of Applied Biology and Biotechnology, 10: 135-44. https://doi.org/10.7324/JABB.2022.100318
Mahfouze, S. A. and H. A. Mahfouze. 2019. A comparison between CAPS and SCAR markers in the detection of resistance genes in some tomato genotypes against Tomato Yellow Leaf Curl Virus and whitefly. Jordan Journal of Biological Sciences, 12: 123-33.
Mohamed, H., A. A. EL-Hady, M. Mansour and A. E.-r. El-Samawaty. 2012. Association of oxidative stress components with resistance to flax powdery mildew. Tropical Plant Pathology, 37: 386-92. https://doi.org/10.1590/S1982-56762012000600002
Mohammadi, M. and H. Kazemi. 2002. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162: 491-98. https://doi.org/10.1016/S0168-9452(01)00538-6
Montalbini, P., R. Buonaurio and N. U. Kumar. 1995. Peroxidase activity and isoperoxidase pattern in tobacco leaves infected with tobacco necrosis virus and other viruses inducing necrotic and non‐necrotic alterations. Journal of Phytopathology, 143: 295-301. https://doi.org/10.1111/j.1439-0434.1995.tb00263.x
Ngadze, E., D. Icishahayo, T. A. Coutinho and J. E. Van der Waals. 2012. Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Disease, 96: 186-92. https://doi.org/10.1094/PDIS-02-11-0149
Oliveira, C. M., A. C. S. Ferreira, V. De Freitas and A. M. Silva. 2011. Oxidation mechanisms occurring in wines. Food Research International, 44: 1115-26. https://doi.org/10.1016/j.foodres.2011.03.050
Pineda, M., C. Sajnani and M. Barón. 2010. Changes induced by the Pepper mild mottle tobamo virus on the chloroplast proteome of Nicotiana benthamiana. Photosynthesis research, 103: 31-45. https://doi.org/10.1007/s11120-009-9499-y
Rolff, M., J. Schottenheim, H. Decker and F. Tuczek. 2011. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: Molecular mechanism and comparison with the enzyme. Chemical Society Reviews, 40: 4077-98. https://doi.org/10.1039/c0cs00202j
Roselló, S., M. J. Díez and F. Nuez. 1996. Viral diseases causing the greatest economic losses to the tomato crop. I. The Tomato spotted wilt virus-A review. Scientia Horticulturae, 67: 117-50. https://doi.org/10.1016/S0304-4238(96)00946-6
Saidi, M. and S. D. Warade. 2008. Tomato breeding for resistance to Tomato spotted wilt virus (TSWV): An overview of conventional and molecular approaches. Czech Journal of Genetics and Plant Breeding, 44: 83-92. https://doi.org/10.17221/47/2008-CJGPB
Siddique, Z., K. P. Akhtar, A. Hameed, N. Sarwar, Imran-Ul-Haq and S. A. Khan. 2014. Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. Journal of Plant Interactions, 9: 702-11. https://doi.org/10.1080/17429145.2014.905800
Soliman, A., M. Idriss, F. El-Meniawi and I. Rawash. 2019. Induction of pathogenesis-related (PR) proteins as a plant defense mechanism for controlling the cotton whitefly Bemisia tabaci. Alexandria Journal of Agricultural Sciences, 64: 107-22. https://doi.org/10.21608/alexja.2019.48432
Stegemann, H., W. Burgermeister, H. Franksen and E. Krogerrecklenfor. 1985. Manual of gel electrophoresis and isoelectric focusing with the apparatus PANTA-PHOR Inst Biochem Messeweg. Braunschweig, West Germany. pp. D-3300.
Stevens, M., S. Scott and R. Gergerich. 1994. Evaluation of seven Lycopersicon species for resistance to tomato spotted wilt virus (TSWV). Euphytica, 80: 79-84. https://doi.org/10.1007/BF00039301
Studier, F. W. 1973. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. Journal of molecular biology, 79: 237-48. https://doi.org/10.1016/0022-2836(73)90003-X
Ullah, N., A. Ali, M. Ahmad, M. Fahim, N. Din and F. Ahmad. 2017. Evaluation of tomato genotypes against tomato mosaic virus (ToMV) and its effect on yield contributing parameters. Pakistan Journal of Botany, 49: 1585-92.
Van Loon, L. C., M. Rep and C. M. Pieterse. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44: 135-62. https://doi.org/10.1146/annurev.phyto.44.070505.143425
Van Loon, L. C. and E. Van Strien. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55: 85-97. https://doi.org/10.1006/pmpp.1999.0213
Vanitha, S. C., S. R. Niranjana and S. Umesha. 2009. Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology, 157: 552-57. https://doi.org/10.1111/j.1439-0434.2008.01526.x
Vranová, E., S. Atichartpongkul, R. Villarroel, M. Van Montagu, D. Inzé and W. Van Camp. 2002. Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. proceedings of the national academy of sciences, 99: 10870-75.https://doi.org/10.1073/pnas.152337999
DOI: 10.33687/phytopath.012.03.4389
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Sherin A. Mahfouze

This work is licensed under a Creative Commons Attribution 4.0 International License.