Antimycotic Potential Assessment of Trichoderma Species and Fungicides for Sustainable Management of Sclerotinia trifoliorum causing Stem and Crown Rot of Trifolium alexandrinum L.

Anjum Faraz, Imran Ul Haq, Siddra Ijaz, Shahbaz T. Sahi, Imran Khan


Sclerotinia trifoliorum, the fungal plant pathogen first reported in 2021 from Pakistan on Trifolium alexandrinum L(Egyptian clover; an annual winter fodder crop), causing Stem and crown rot disease. About 46% to 55% incidence of this disease was recorded on E. clover cultivated in the irrigated tract of the country in 2018-19. This disease is subjecting significant crop losses and drastically reducing growth. An integrated disease management approach employing biological and chemical control was adopted to manage this wide-spreading fungal pathogen. The fungal antagonists, including Trichoderma harzianum, T. longibrachiatum, and T. asperellum Moreover, fungicides, including Thiophanate Methyl, Tebuconazole, Tubeconazole+Emdachloprid, Chlorothalonil+cymoxanil, Azoxystrobin, Pyraclostrobin+Metiram, and Mancozeb+Metalaxyl were tested under in vitro and field conditions. Among Trichoderma species, the best response was achieved by T. harzianum with 80.61% inhibition compared to control. Among concentrations of T. harzianum, the best response was achieved on 1/10 (1.24 cm) with 2.4 average No. of Sclerotia and 66% inhibition. Under filed condition experiments, the data regarding Disease severity in T. harzianum treated trays was 51.7% compared to untreated/control 73.5%. Besides disease control, the application of T. harzianum showed a significant increase in green and dry fodder weight (851 grams with 87 grams of dry weight) than untreated/control (561 grams with 55 grams of dry weight) in the fourth cut. For chemical evaluation, seven fungicides tested at three concentrations under in vitro trials among these Thiophanate methyl (0.5 cm) with 90.7% inhibition were found more effective. Thiophanate Methyl's application significantly reduced the disease severity compared to control plants with disease severity in fungicide-treated trays was 28.7% compared to untreated/control 73.5% and significant increase green and dry fodder weight (931 grams with 92 grams of dry weight) than untreated/control (561 grams with 55 grams of dry weight) in the fourth cut.


Disease management; Disease severity; Fungicides; Fodder; Trichoderma


Ali, H., M. Naseer and M. A. Sajad. 2012. Phytoremediation of heavy metals by Trifolium alexandrinum. International Journal of Environmental Sciences, 2: 1459-69.

Amanullah, A. K., S. Alam and H. Khan. 2005. Performance of berseem varieties at Peshawar. Sarhad Journal of Agriculture, 21: 317-21.

Bell, D., H. Wells and C. Markham. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72: 379-82.

Boat, M. A. B., B. Iacomi, M. L. Sameza and F. F. Boyom. 2018. Fungicide tolerance and effect of environmental conditions on growth of Trichoderma spp. with antagonistic activity against Sclerotinia sclerotiorum causing white mold of common bean (Phaseolus vulgaris). International Journal of Innovative Approaches in Agricultural Research, 2: 226-43.

Burki, A. A., M. A. Khan and F. Bari. 2005. The state of Pakistan's dairy sector. An assessment. Centre for Management and Economic Research. Lahore University of Management Sciences, Lahore Pakistan, pp. 4-34.

Chet, I. and R. Baker. 1981. Isolation and biocontrol potential of Trichoderma harzianum from soil naturally suppressive to Rhizoctonia solani. Phytopathology, 71: 286-90.

Costa, G. R. and J. L. da Silva Costa. 2004. Effect of fungicide application in the soil on the carpogenic and myceliogenic germination of Sclerotinia sclerotiorum. Pesquisa Agropecuária Tropical, 34: 133.

Dixon, G. and J. Doodson. 1974. Techniques for testing the resistance of red clover cultivars to Sclerotinia trifoliorum Erikss (clover rot). Euphytica, 23: 671-79.

Economic survey of Pakistan. 2019-20. Economic Adviser's Wing. Finance Division, Government of Pakistan. Islamabad.

El-Wakil, A. and M. Ghonim. 2000. Survey of seed borne mycoflora of peanut and their control. Egyptian Journal of Agricultural Research, 78: 47-61.

Elif, T., M. Parisa, K. M. Senol, N. Hayrunnisa and K. Recep. 2016. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mould disease in red cabbage, by some bacteria. Plant Protection Science, 52: 188-98.

Faraz, A., I. U. Haq, S. Ijaz, K. Imran and T. S. Shahbaz. 2022. Phylogenomic appraisal of morpho-pathogenicity try-out based identified pathogen causing stem and crown rot in Trifolium alexandrinum L. PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 59: 493-501.

Faraz, A., I. U. Haq, S. Ijaz, F. Mubeen, A. Habib, R. W. K. Qadri and N. A. Khan. 2020. Morphgenomics based identification of Fusarium proliferatum causing Syagrus romanzoffiana wilt and exploitation of antifungal potential of Trichoderma species against this pathogen. Journal of Plant Pathology, 102: 1097-105.

Faraz, A. and S. Ijaz. 2021. First report of Sclerotinia trifoliorum stem and crown rot on Trifolium alexandrinum in Pakistan. Journal of Plant Pathology, 103: 735-36.

Figueirêdo, G. S. d., L. C. d. Figueirêdo, F. C. N. Cavalcanti, A. C. d. Santos, A. F. d. Costa and N. T. d. Oliveira. 2010. Biological and chemical control of Sclerotinia sclerotiorum using Trichoderma spp. and Ulocladium atrum and pathogenicity to bean plants. Brazilian Archives of Biology and Technology, 53: 1-9.

Haq, I. U., S. Ijaz, A. Faraz and N. A. Khan. 2021. Characterization of Curvularia buchloes causing leaf spots on Medicago sativa L.(alfalfa) and its management through fungicides. Journal of Plant Diseases and Protection, 128: 493-500.

Helmy, A., M. Baiuomy and A. Hilal. 2001. First record of root rot and wilt diseases of the medicinal plant Ruta graveolens L. in Egypt and their control. Egyptian Journal of Agricultural Research, 79: 21-35.

Joshi, B., R. Bhatt and D. Bahukhandi. 2010. Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. Journal of Environmental Biology, 31: 921.

Kamal, M., S. Savocchia, K. D. Lindbeck and G. J. Ash. 2016. Biology and biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary in oilseed Brassicas. Australasian Plant Pathology, 45: 1-14.

Knight, W. 1985. Miscellaneous annual clovers. Clover science and technology, 25: 547-62.

Küçük, Ç., M. Kıvanç, E. Kınacı and G. Kınacı. 2003. Antifungal peptidler. Orlab On-Line Journal of Microbiology, 1: 1-8.

Lehner, M., T. Paula Júnior, R. Silva, R. Vieira, J. Carneiro, G. Schnabel and E. Mizubuti. 2015. Fungicide sensitivity of Sclerotinia sclerotiorum: A thorough assessment using discriminatory dose, EC50, high-resolution melting analysis, and description of new point mutation associated with thiophanate-methyl resistance. Plant Disease, 99: 1537-43.

Lemay, A., J. Bailey and B. Shew. 2002. Resistance of peanut to Sclerotinia blight and the effect of acibenzolar-S-methyl and fluazinam on disease incidence. Plant Disease, 86: 1315-17.

Mahoney, K., C. McCreary and C. Gillard. 2014. Response of dry bean white mould [Sclerotinia sclerotiorum (Lib.) de Bary, causal organism] to fungicides. Canadian Journal of Plant Science, 94: 905-10.

Matheron, M. and M. Porchas. 2004. Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and vinclozolin on growth of Sclerotinia minor and S. sclerotiorum and development of lettuce drop. Plant Disease, 88: 665-68.

McCreary, C. M., D. Depuydt, R. J. Vyn and C. L. Gillard. 2016. Fungicide efficacy of dry bean white mold [Sclerotinia sclerotiorum (Lib.) de Bary, causal organism] and economic analysis at moderate to high disease pressure. Crop protection, 82: 75-81.

Mueller, D., C. Bradley, C. Grau, J. Gaska, J. Kurle and W. Pedersen. 2004. Application of thiophanate-methyl at different host growth stages for management of Sclerotinia stem rot in soybean. Crop protection, 23: 983-88.

Mueller, D., A. Dorrance, R. Derksen, E. Ozkan, J. Kurle, C. Grau, J. Gaska, G. Hartman, C. Bradley and W. Pedersen. 2002. Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Disease, 86: 26-31.

Muhammad, D., B. Misri, M. El-Nahrawy, S. Khan and A. Serkan. 2014. Egyptian clover (Trifolium alexandrinum) king of forage crops. FAO, Regional Office for the Near East and North Africa. Cairo, Egypt, pp. 137.

Mukhtar, I., A. Hannan, M. Atiq and A. Nawaz. 2012. Impact of Trichoderma species on seed germination in soybean. Pakistan Journal of Phytopathology, 24: 159-62.

Muthukumar, A., A. Eswaran and K. Sanjeevkumas. 2011. Exploitation of Trichoderma species on the growth of Pythium aphanidermatum in chilli. Brazilian Journal of Microbiology, 42: 1598-607.

Naeem, M., R. Kainth, M. Chohan and A. Khan. 2006. Peformance of berseem, Trifolium alexandrinum varieties for green fodder yield potential. Journal of Agricultural Research, 44: 285-89.

Nagarajan, S., S. Nayar and P. Bahadur. 1983. The proposed brown rust of wheat (Puccinia recondita f. sp. tritici) virulence monitoring system. Current Science: 413-16.

Papavizas, G. 1985. Trichoderma and Gliocladium: Biology, ecology, and potential for biocontrol. Annual Review of Phytopathology, 23: 23-54.

Picinini, E. and A. Goulart. 2002. Novos fungicidas para tratamento de sementes. Revisão Anual de Patologia de Plantas, 10: 33-66.

Ramasubramaniam, H., L. E. del Río Mendoza and C. A. Bradley. 2008. Estimates of yield and economic losses associated with white mold of rain‐fed dry bean in North Dakota. Agronomy Journal, 100: 315-19.

Reis, E., A. C. Reis and M. Carmona. 2010. Manual de fungicidas: guia para o controle químico de doenças de plantas. Passo Fundo: UPF.

Sarma, B. K., S. K. Yadav, J. S. Patel and H. B. Singh. 2014. Molecular mechanisms of interactions of Trichoderma with other fungal species. Open Mycology Journal, 8: 140-47.

Shaat, M. and E. El-Argawy. 2011. Biological and chemical control of Sclerotinia sclerotiorum the pathogen of basal stalk rot of bean plants. Assiut Journal of Agricultural Sciences, 42: 53-65.

Sharma, P., P. Meena, P. Verma, G. Saharan, N. Mehta, D. Singh and A. Kumar. 2016. Sclerotinia sclerotiorum (Lib) de Bary causing Sclerotinia rot in oilseed Brassicas: A review. Journal of Oilseed Brassica, 1: 1-44.

Singh, V., A. Ranaware and N. Nimbkar. 2008. Bioefficacy of antagonists against root-rot fungus Macrophomina phaseolina of safflower. Proceedings of 7th International Safflower Conference.

Steindorff, A. S., M. H. S. Ramada, A. S. G. Coelho, R. N. G. Miller, G. J. Pappas, C. J. Ulhoa and E. F. Noronha. 2014. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC genomics, 15: 1-14.

Sumida, C. H., M. G. Canteri, D. C. Peitl, F. Tibolla, I. P. Orsini, F. A. Araújo, D. F. Chagas and N. S. Calvos. 2015. Chemical and biological control of Sclerotinia stem rot in the soybean crop. Ciência Rural, 45: 760-66.

Vieira, R. F., T. J. Paula Júnior, J. E. S. Carneiro, H. Teixeira and T. F. N. Queiroz. 2012. Management of white mold in type III common bean with plant spacing and fungicide. Tropical Plant Pathology, 37: 91-101.

Vincent, J. 1947. Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159: 850-50.

Virender, S. and S. S. Narwal. 2000. Influence of time of sowing and last cut for fodder on the fodder and seed yields of Egyptian clover. The Journal of Agricultural Science, 134: 285-91.

Woo, S. L., M. Ruocco, F. Vinale, M. Nigro, R. Marra, N. Lombardi, A. Pascale, S. Lanzuise, G. Manganiello and M. Lorito. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycology Journal, 8: 71-126.

Zhang, F., H. Ge, F. Zhang, N. Guo, Y. Wang, L. Chen, X. Ji and C. Li. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry, 100: 64-74.

Full Text: PDF

DOI: 10.33687/phytopath.011.02.4271


  • There are currently no refbacks.

Copyright (c) 2022 Imran Ul Haq, anjum faraz, Siddra Ijaz, shahbaz talib sahi, Imran Khan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.