Bacterial Spot caused by Xanthomonas vesicatoria Devastated Tomato Production of Khyber Pakhtunkhwa-Pakistan

Ijaz Ahmad, Musharaf Ahmad

Abstract


The bacterial spot caused by Xanthomonas campestris pv. vesicatoria (Xcv) has devastated commercial tomato output in Pakistan's especially in Khyber Pakhtunkhwa (KP) province. Field surveys were conducted in 2017 and 2018 to analyze the effects of the bacterial spot in tomato producing areas of KP, including Swat, Lower Dir, and Mansehra. During the growing seasons, diseased samples were collected from tomato fields, and disease incidence and severity were documented. The pathogen was isolated, purified, and morphologically and biochemically characterized. Most of the morphological and biochemical characteristics such as yellow colonies were like those of Xanthomonas spp. Further, the pathogen was confirmed using XV1F/XV1R pair of species-specific primers, which amplify the atpD gene sequence solely in Xanthomonas vesicatoria. Out of 30 isolates, 16 isolates were confirmed to be Xcv. In these agro-ecological zones, this was the first report on the presence of Xcv. Furthermore, humidity and temperature were found to impact the incidence and severity of bacterial spot substantially. Most isolates grew at high temperatures and low humidity; however, some preferred high-temperature and low-humidity environments. In conclusion, bacterial spot disease caused by Xcv has now spread throughout all tomato-producing areas of KP province. To avert future plant epidemics, ongoing climate and pest monitoring is required to build an effective disease warning system for producers and other agriculture-related agencies.

Keywords


Bacterial spot; tomato; Xanthomonas vesicatoria; disease severity; disease incidence; temperature; humidity;

References


Abbasi, P. A., J. Al-Dahmani, F. Sahin, H. A. J. Hoitink and S. A. Miller. 2002. Effect of Compost Amendments on Disease Severity and Yield of Tomato in Conventional and Organic Production Systems. Plant Dis, 86: 156-61. https://doi.org/10.1094/PDIS.2002.86.2.156

Abdel-Monaaim, M. F., K. A. M. Abo-Elyousr and K. M. Morsy. 2011. Effectiveness of plant extracts on suppression of damping-off and wilts diseases of lupine (Lupinus termis Forsik). . Crop Protection,, 30: 185-91. https://doi.org/10.1016/j.cropro.2010.09.016

Abdo-Hasan, M., H. Khalil, B. Debis and N. MirAli. 2008. Molecular characterization of Syrian races of Xanthomonas axonopodis pv. malvacearum. Journal of Plant Pathology: 431-39.

Abrahamian, P., S. Timilsina, G. V. Minsavage, N. Potnis, J. B. Jones, E. M. Goss and G. E. Vallad. 2019. Molecular epidemiology of Xanthomonas perforans outbreaks in tomato from transplant to field by single-nucleotide polymorphism analysis. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01220-19

Agrios, G. N. 2005. Bacterial spot of tomato and pepper; In Plant Pathology (5th Edition), Elsevier Academic Press: pp-633-34.

Al-Dahmani, J. H., P. A. Abbasi, S. A. Miller and H. A. Hoitink. 2003. Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87: 913-19. https://doi.org/10.1094/PDIS.2003.87.8.913

Ali, A., T. A. Khan and S. Ahmad. 2018. Analysis of Climate Data of Khyber Pakhtunkhwa, Pakistan. International Research Journal of Engineering and Technology (IRJET), 5: 4266-82.

Amanda, S. S., Y. Y. Liao, P. Abrahamian, S. Timilsina, M. Paret, T. Momol, J. B. Jones and G. E. Vallad. 2019. Integrated Management of Bacterial Spot on Tomato in Florida: PP353, 11/2019. EDIS, 2019: 8. https://doi.org/10.32473/edis-pp353-2019

Araújo, E., R. Pereira, M. Ferreira, A. Café-Filho, A. Moita and A. Quezado-Duval. 2010. Effect of temperature on pathogenicity components of tomato bacterial spot and competition between Xanthomonas perforans and X. gardneri. III International Symposium on Tomato Diseases 914. https://doi.org/10.17660/ActaHortic.2011.914.3

Barak, J. D., S. T. Koike and R. L. J. P. d. Gilbertson. 2001. Role of crop debris and weeds in the epidemiology of bacterial leaf spot of lettuce in California, 85: 169-78. https://doi.org/10.1094/PDIS.2001.85.2.169

Bashan, Y., M. Azaizeh, S. Diab, H. Yunis and Y. J. C. p. Okon. 1985. Crop loss of pepper plants artificially infected with Xanthomonas campestris pv. vesicatoria in relation to symptom expression, 4: 77-84. https://doi.org/10.1016/0261-2194(85)90007-9

Beran, P. and I. Mráz. 2013. Species-specific PCR primers for detection of Xanthomonas vesicatoria. Crop Prot, 43: 213-15. https://doi.org/10.1016/j.cropro.2012.08.008

Bocsanczy, A., D. Schneider, G. DeClerck, S. Cartinhour and S. Beer. 2012. HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. Journal of Bacteriology, 194: 553-60. https://doi.org/10.1128/JB.05065-11

Bouzar, H., N. Ahmed, G. Somodi, J. Jones and R. Stall. 1994. Characterization of Xanthomonas campestris pv. vesicatoria strains from tomato and pepper grown in Sudan. Plant Disease, 78. https://doi.org/10.1094/PD-78-1219E

Burlakoti, R. R., C.-f. Hsu, J.-r. Chen and J.-f. J. P. d. Wang. 2018. Population dynamics of xanthomonads associated with bacterial spot of tomato and pepper during 27 years across Taiwan, 102: 1348-56. https://doi.org/10.1094/PDIS-04-17-0465-RE

Büttner, D. and U. Bonas. 2010. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev, 34: 107-33. https://doi.org/10.1111/j.1574-6976.2009.00192.x

Costa, J., J. F. Pothier, J. Boch, E. Stefani, M.-A. Jacques, V. Catara and R. Koebnik. 2021. Integrating science on Xanthomonadaceae for sustainable plant disease management in Europe. Molecular Plant Pathology, 22: 1461-63. https://doi.org/10.1111/mpp.13150

Dai, X., G. Gao, M. Wu, W. Wei, J. Qu, G. Li and T. Ma. 2019. Construction and application of a Xanthomonas campestris CGMCC15155 strain that produces white xanthan gum. Microbiologyopen, 8: e00631-e31. https://doi.org/10.1002/mbo3.631

El-Ariqi, S., A. Abdel-Rahman and S. Al-Ganesi. 2010. Isolation and identification of bacteria causing tomato leaf spot in Yemen with susceptibility of certain cultivars. Arab Gulf Journal of Scientific Research, 28: 232-39. https://doi.org/10.51758/AGJSR-04-2010-0010

Emana, B., V. Afari-Sefa, N. Nenguwo, A. Ayana, D. Kebede and H. Mohammed. 2017. Characterization of pre- and postharvest losses of tomato supply chain in Ethiopia. Agriculture & Food Security, 6: 3. https://doi.org/10.1186/s40066-016-0085-1

FAOSTAT. 2021. Food and Agriculture Organization, Production, Crops http://www.fao.org/faostat/en/#data/QC.

Fatah, S. A., A. Mubarik and Y. Aqsa. 2020. Tomato Cluster Feasibility and Transformation Study. In Ali Mubarik, (ed.). (2020). Cluster Development Based Agriculture Transformation Plan Vision-2025. Project No. 131(434)PC/AGR/CDBAT-120/2018. Planning Commission of Pakistan, Islamabad, Pakistan and Centre for Agriculture and Biosciences International (CABI), Rawalpindi, Pakistan.

Gangwar, O., S. Bhardwaj, G. Singh, P. Prasad and S. Kumar. 2018. Barley disease and their management: An Indian perspective. Wheat and Barley Research, 10: 138-50. https://doi.org/10.25174/2249-4065/2018/83844

Harvell, C. D., C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld and M. D. Samuel. 2002. Climate warming and disease risks for terrestrial and marine biota. Science, 296: 2158-62. https://doi.org/10.1126/science.1063699

Horvath, D. M., R. E. Stall, J. B. Jones, M. H. Pauly, G. E. Vallad, D. Dahlbeck, B. J. Staskawicz and J. W. Scott. 2012. Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS One, 7: e42036. https://doi.org/10.1371/journal.pone.0042036

Jarial, K., R. S. Jarial, S. Kumari, A. Sharma and D. Sharma. 2022. Impact of weather parameters on the development of bacterial leaf spot in bottle gourd and pumpkin. Indian Phytopathology, 75: 191-96. https://doi.org/10.1007/s42360-021-00433-0

Jaufeerally-Fakim, Y. and A. Dookun. 2000. Extraction of high quality DNA from polysaccharides-secreting xanthomonads. University of Mauritius Research Journal, 6: 33-40.

Jones, J., K. Pohronezny, R. Stall and J. Jones. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology, 76: 430-34. https://doi.org/10.1094/Phyto-76-430

Jones, J., R. Stall and H. J. A. r. o. p. Bouzar. 1998. Diversity among xanthomonads pathogenic on pepper and tomato, 36: 41-58. https://doi.org/10.1146/annurev.phyto.36.1.41

Kizheva, Y., T. Vancheva, P. Hristova, M. Stoyanova, M. Stojanovska, P. Moncheva and N. J. B. J. o. A. S. Bogatzevska. 2013. Identification of Xanthomonas strains from tomato and pepper and their sensitivity to antibiotics and copper, 19: 80-82.

Leyns, F., M. De Cleene, J.-G. Swings and J. De Ley. 1984. The host range of the genus Xanthomonas. The Botanical Review, 50: 308-56. https://doi.org/10.1007/BF02862635

Li, W., Y.-P. Xu, J. Yang, G.-Y. Chen and X.-Z. Cai. 2015a. Hydrogen peroxide is indispensable to Xanthomonas oryzae pv. oryzae-induced hypersensitive response and nonhost resistance in Nicotiana benthamiana. Australasian Plant Pathology, 44: 611-17. https://doi.org/10.1007/s13313-015-0376-1

Li, X., Y. Bi, J. Wang, B. Dong, H. Li, D. Gong, Y. Zhao, Y. Tang, X. Yu and Q. Shang. 2015b. BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. J Proteomics, 120: 179-93. https://doi.org/10.1016/j.jprot.2015.03.006

Louws, F., M. Wilson, H. Campbell, D. Cuppels, J. Jones, P. Shoemaker, F. Sahin and S. Miller. 2001. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Disease, 85: 481-88. https://doi.org/10.1094/PDIS.2001.85.5.481

Ma, X., M. L. Lewis Ivey and S. A. Miller. 2011. First Report of Xanthomonas gardneri Causing Bacterial Spot of Tomato in Ohio and Michigan. Plant Dis, 95: 1584. https://doi.org/10.1094/PDIS-05-11-0448

Mitrev, S. 2001. Phytopathogenic bacteria on pepper in Macedonia.

Mitrev, S., I. Karov, D. Spasov, E. Arsov, B. Kovacevik and E. Todorovska. 2013. Characterization of fire blight strains (Erwinia amylovora) from different host plants from Macedonia.

Morales, C., J. Posada, E. Macneale, D. Franklin, I. Rivas, M. Bravo, J. Minsavage, R. Stall and M. Whalen. 2005. Functional analysis of the early chlorosis factor gene. Molecular plant-microbe interactions, 18: 477-86. https://doi.org/10.1094/MPMI-18-0477

Morales, G., I. Llorente, E. Montesinos and C. Moragrega. 2017. A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature. PLoS One, 12: e0177583. https://doi.org/10.1371/journal.pone.0177583

Nafiu, L. A. 2012. Comparison of one-stage, two-stage, and three-stage estimators using finite population. The Pacific Journal of Science and Technology, 13: 166-71.

Ogolla, O. and D. Neema. 2019. Cultural, Morphological and Biochemical Identification of Xanthomonas Spp the Causative Agent of Bacteria Leaf Spot in Tomatoes in Wanguru, Mwea, Kirinyaga County, Kenya. International Journal of Research and Innovation in Applied Science, IV: 44-48.

Panno, S., S. Davino, A. G. Caruso, S. Bertacca, A. Crnogorac, A. Mandić, E. Noris and S. Matić. 2021. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy, 11: 2188. https://doi.org/10.3390/agronomy11112188

Park, D. S., J. K. Shim, J. S. Kim, C. K. Lim, R. Shrestha, J. H. Hahn and H. G. Kim. 2009. Sensitive and specific detection of Xanthomonas campestris pv. vesicatoria by PCR using pathovar-specific primers based on rhs family gene sequences. Microbiol Res, 164: 36-42. https://doi.org/10.1016/j.micres.2006.11.005

Pohronezny, K., R. E. Stall, B. I. Canteros, M. Kegley, L. E. Datnoff and R. Subramanya. 1992. Sudden shift in the prevalent race of Xanthomonas campestris pv. vesicatoria in pepper fields in southern Florida. Plant Disease, 76: 118-20. https://doi.org/10.1094/PD-76-0118

Potnis, N., J. Colee, J. B. Jones and J. D. Barak. 2015a. Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves. Appl Environ Microbiol, 81: 8126-34. https://doi.org/10.1128/AEM.01926-15

Potnis, N., S. Timilsina, A. Strayer, D. Shantharaj, J. D. Barak, M. L. Paret, G. E. Vallad and J. B. Jones. 2015b. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol Plant Pathol, 16: 907-20. https://doi.org/10.1111/mpp.12244

Raja, M. U., T. Mukhtar, F. A. Shaheen, I. Bodlah, A. Jamal, B. Fatima, M. Ismail and I. Shah. 2018. Climate change and its impact on plant health: a Pakistan's prospective. Plant Protection, 2: 51-56.

Rashid, T. S., K. Sijam, H. K. Awla, H. M. Saud and J. J. A. J. o. P. S. Kadir. 2016. Pathogenicity assay and molecular identification of fungi and bacteria associated with diseases of tomato in Malaysia, 7: 949-57. https://doi.org/10.4236/ajps.2016.76090

Ravikumar, M. and A. Khan. 2001. Influence of weather parameters on the incidence of bacterial spot of tomato. Indian Journal of agricultural Research, 35: 60-62.

Rodriguez-R, L. M., A. Grajales, M. L. Arrieta-Ortiz, C. Salazar, S. Restrepo and A. Bernal. 2012. Genomes-based phylogeny of the genus Xanthomonas. BMC microbiology, 12: 1-14. https://doi.org/10.1186/1471-2180-12-43

Ryan, R. P., F.-J. Vorhölter, N. Potnis, J. B. Jones, M.-A. Van Sluys, A. J. Bogdanove and J. M. Dow. 2011. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nature Reviews Microbiology, 9: 344-55. https://doi.org/10.1038/nrmicro2558

Singh, V. K., A. K. Singh and A. Kumar. 2017. Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech, 7: 255-55. https://doi.org/10.1007/s13205-017-0896-1

Stall, R. E., T. Gottwald and M. Koizumi. 2012. Ecology of plant pathogenic. Xanthomonas: 265. https://doi.org/10.1007/978-94-011-1526-1_5

Stall, R. E., J. B. Jones and G. V. J. A. r. o. p. Minsavage. 2009. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot, 47: 265-84. https://doi.org/10.1146/annurev-phyto-080508-081752

Sundin, G. W., L. F. Castiblanco, X. Yuan, Q. Zeng and C. H. Yang. 2016. Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology. Molecular Plant Pathology, 17: 1506-18. https://doi.org/10.1111/mpp.12436

Vallad, G., S. Timilsina, H. Adkison, N. Potnis, G. Minsavage, J. Jones and E. Goss. 2013. A recent survey of xanthomonads causing bacterial spot of tomato in florida provides insights into management strategies. TomaTo Proceedings: 25.

Vallejos, C. E., V. Jones, R. E. Stall, J. B. Jones, G. V. Minsavage, D. C. Schultz, R. Rodrigues, L. E. Olsen and M. Mazourek. 2010. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theoretical and applied genetics, 121: 37-46. https://doi.org/10.1007/s00122-010-1289-6

van Maanen, A. and X. M. Xu. 2003. Modelling Plant Disease Epidemics. European Journal of Plant Pathology, 109: 669-82. https://doi.org/10.1023/A:1026018005613

Velásquez, A. C., C. D. M. Castroverde and S. Y. He. 2018. Plant-Pathogen Warfare under Changing Climate Conditions. Current biology : CB, 28: R619-R34. https://doi.org/10.1016/j.cub.2018.03.054

Wen, A., B. Balogh, M. T. Momol, S. M. Olson and J. B. Jones. 2009. Management of bacterial spot of tomato with phosphorous acid salts. Crop Prot, 28: 859-63. https://doi.org/10.1016/j.cropro.2009.04.013

Workayehu, M., M. Enyew, N. Abitew and R. Kakuhenzire. 2021. Potato bacterial wilt management for quality seed potato production in Ethiopia: A training manual for agricultural extension experts, development agents, farmers' seed grower cooperatives and decentralized seed multipliers.

Yang, W., E. J. Sacks, M. L. Lewis Ivey, S. A. Miller and D. M. Francis. 2005. Resistance in Lycopersicon esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology, 95: 519-27. https://doi.org/10.1094/PHYTO-95-0519

Zhao, Y., J. P. Damicone and C. L. J. P. d. Bender. 2002. Detection, survival, and sources of inoculum for bacterial diseases of leafy crucifers in Oklahoma, 86: 883-88. https://doi.org/10.1094/PDIS.2002.86.8.883


Full Text: PDF

DOI: 10.33687/phytopath.011.01.4071

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Ijaz Ahmad, Musharaf Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.