Effect of Different Carbon and Nitrogen Sources on Sclerotium rolfsii sacc. Mycelial Growth and Sclerotial Development

Fakher Ayed, Hayfa Jabnoun-Khiareddine, Rania Aydi-Ben Abdallah, Mejda Daami-Remadi

Abstract


Different carbon and nitrogen sources were evaluated for their effects on the mycelial growth, and the sclerotial development of three Tunisian Sclerotium rolfsii Sacc. isolates. Radial growth was optimum on basal medium supplemented with ammonium chloride (0.48 g N.L-1) as N source, but was restricted on L-Arginine and completely inhibited on ammonium acetate amended media. Sclerotial initiation occurred from the 3rd to the 12th day of incubation for all tested isolates. Potassium nitrate was the most suitable N source for sclerotial formation whereas sclerotial development was completely inhibited on ammonium acetate amended medium. Optimal sclerotial germination was recorded using L-Arginine followed by L-Asparagine and ammonium chloride as N sources. Nevertheless, the lowest sclerotial germination rate was noted on sodium nitrate and ammonium acetate amended media. As for C sources (16 g C.L-1), optimal radial growth occurred using D-mannitol for Sr1 and Sr2 isolates and maltose for Sr3 but no mycelial growth was recorded using sodium citrate. All C sources tested, except sodium citrate, were suitable for sclerotial formation, production, and germination. Mature sclerotia became brownish after 6 to 12 days of incubation and sclerotial production was highest using D-mannitol, maltose and D-glucose, depending on isolates used, as C sources. Optimal germination of sclerotia was noted using D-glucose, D-mannitol and maltose for Sr1 isolate, maltose for Sr2 and D-glucose and maltose for Sr3. It was concluded that N and C sources are both important factors for the growth of S. rolfsii and its survival.


Keywords


Carbon; germination; mycelial growth; nitrogen; sclerotial production; Sclerotium rolfsii

References


Al-Noimi and A. S. Kassim. 2006. Effect of different carbon and nitrogen sources on the production of scleroglucan by an isolate of the fungus Sclerotium rolfsii. Tikrit Journal of Pure Science, 11: 23-25.

Anahosur, K. H. 2001. Integrated management of potato sclerotium wilt caused by Sclerotium rolfsii. Indian Phytopathology, 54: 158-66.

Ansari, M. M. and S. K. Agnihotri. 2000. Morphological, physiological and pathological variations among Sclerotium rolfsii isolates of soyabean. Indian Phytopathology, 53: 65-67.

Aycock, R. 1966. Stem rot and other diseases caused by Sclerotium rolfsii or the status of rolfs' fungus after 70 years Technical Bulletin. North Carolina Agricultural Experiment Station. pp. 136-202.

Ayed, F. 2019. Effect of osmotic potential on the growth and survival of Sclerotium rolfsii Sacc. Current Research in Environmental & Applied Mycology, 9: 213-23.

Ayed, F., H. Jabnoun-Khiareddine, R. Aydi-Ben-Abdallah and M. Daami-Remadi. 2018a. Effects of pH and aeration on Sclerotium rolfsii sacc. mycelial growth, sclerotial production and germination. International Journal of Phytopathology, 7: 123-29.

Ayed, F., H. J. Khiareddine, R. A. B. Abdallah and M. D. Remadi. 2018b. Effect of temperatures and culture media on Sclerotium rolfsii mycelial growth, sclerotial formation and germination. Journal of Plant Pathology & Microbiology, 09: 429-35.

Banyal, D. K., V. Mankotia and S. K. Sugha. 2008. Soil characteristics and their relation to the development of tomato collar rot caused by Sclerotium rolfsii. Indian Phytopathology, 61: 103-07.

Bateman, D. F. and S. V. Beer. 1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology, 55: 204-11.

Bhagat, I. 2013. Factors influencing mycelial growth of Sclerotium rolfsii. Nepalese Journal of Biosciences, 1: 26-31.

Billah, K. M. M. 2017. Pathogenicity of Sclerotium rolfsii on different host, and its over wintering survival; A mini review. International Journal of Advances in Agriculture Sciences, 2: 1-6.

Chandra, A. and R. P. Purkayastha. 1977. Physiological studies on Indian edible mushrooms. Transactions of the British Mycological Society, 69: 63-70.

Divya, B. and S. Narayanba. 2017. Influence of carbon and nitrogen sources on growth of Sclerotium rolfsii Sacc. causing stem rot of tuberose (Pollanthes tuberosa L.). Environment and Ecology, 35: 3315-17.

Dube, H. C. 1983. Nutrition of fungi. In: H C Dube (ed.), An Introduction to Fungi Vicks Publishing House Pvt. Ltd.: India.

Dunn, G. M. 1985. Nutritional Requirements of Microorganisms. In: M Moo Young (ed.), Comprehensive Biotechnology Pergamon Press: Oxford, New York, USA.

Elgorban, A. M., A. H. Bahkali, M. Elsheshtawi and S. R. M. Sayed. 2014. Effect of carbon, nitrogen sources and carbon to nitrogen ratios on Sclerotinia sclerotiorum. Journal Of Pure And Applied Microbiology, 8: 3697-701.

Fariña, J. I., V. E. Santos, N. I. Perotti, J. A. Casas, O. E. Molina and F. García-Ochoa. 1999. Influence of the nitrogen source on the production and rheological properties of scleroglucan produced by Sclerotium rolfsii ATCC 201126. World Journal of Microbiology and Biotechnology, 15: 309-16.

Ferrar, P. H. and J. R. L. Walker. 1993. o-Diphenol oxidase inhibition—an additional role for oxalic acid in the phytopathogenic arsenal of Sclerotinia sclerotiorum and Sclerotium rolfsii. Physiological and Molecular Plant Pathology, 43: 415-22.

Fery, R. L. and P. D. Dukes. 2002. Southern blight (Sclerotium rolfsii Sacc.) of cowpea: Yield-loss estimates and sources of resistance. Crop Protection, 21: 403-08.

Galdames, R. and J. Diaz. 2010. Stem rot of branched broomrape (Orobanche ramosa) caused by Sclerotium rolfsii in Chile. Plant Disease, 94: 1266.

Garraway, O. M. and C. R. Evans. 1984. Fungal Nutrition and Physiology John Wiley and Sons: New York, USA.

Gurha, S. N. and R. S. Dubey. 1983. Occurrence of possible sources of resistance in chikpea (Cicer arietinum L.) against Sclerotium rolfsii Sacc. Madras agricultural journal, 70: 63-64.

Hussain, A., S. M. Iqbal, N. Ayub and A. M. Haqqani. 2003. Physiological study of Sclerotium rolfsii sacc. Plant Pathology Journal, 2: 102-06.

Hyakumachi, M., S. N. Mondal, M. M. Elsharkawy and N. Hassan. 2014. Carbon loss by sclerotia of Sclerotium rolfsii under the influence of soil pH, temperature and matric potential and its effect on sclerotial germination and virulence. Applied Soil Ecology, 77: 34-41.

Jayasinghe, C., A. Imtiaj, H. Hur, G. W. Lee, T. S. Lee and U. Y. Lee. 2008. Favorable culture conditions for mycelial growth of Korean wild strains in Ganoderma lucidum. Mycobiology, 36: 28-33.

Kator, L., Z. Y. Hosea and O. D. Oche. 2015. Sclerotium rolfsii: Causative organism of southern blight, stem rot, white mold and sclerotia rot disease. Annals of Biological Research, 6: 78-89.

Khattabi, N., B. Ezzahiri, L. Louali and A. Oihabi. 2004. Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie, 24: 281-88.

Kritzman, G., I. Chet and Y. Henis. 1977. The role of oxalic acid in the pathogenic behavior of Sclerotium rolfsii Sacc. Experimental Mycology, 1: 280-85.

Kwon, J. H., D. W. Kang and J. Kim. 2013. Sclerotium rolfsii causes white rot on taro in Korea. Plant Disease, 97: 1000.

Liu, Y. Y. and S. X. Guo. 2009. Nutritional factors determining sclerotial formation of Polyporus umbellatus. Letters in Applied Microbiolology, 49: 283-8.

Ludwig, R. and D. Haltrich. 2002. Cellobiose dehydrogenase production by Sclerotium species pathogenic to plants. Lett Appl Microbiol, 35: 261-6.

Mahadevakumar, S., V. Yadav, G. S. Tejaswini and G. R. Janardhana. 2015. Morphological and molecular characterization of Sclerotium rolfsii associated with fruit rot of Cucurbita maxima. European Journal of Plant Pathology, 145: 215-19.

Maurya, S., U. Singh, R. Singh, A. Singh and H. Singh. 2010. Role of air and light in sclerotial development and basidiospore formation in Sclerotium rolfsii. Journal of Plant Protection Research, 50: 206-09.

McCarter, S. M. and S. J. Kays. 1984. Diseases limiting production of Jerusalem artichokes in Georgia. Plant Disease, 68: 299-302.

Mostafa, M. H. and M. H. Mohamed. 2018. Influence of Different Nitrogen Sources on Growth and Pathogenic Capability of Rhizoctonia solani Causing Root Rot of Faba Bean. International Journal of Phytopathology, 7: 19-29.

Muthukumar, A. and A. Venkatesh. 2013. Physiological studies of Sclerotium rolfsii Sacc. causing collar rot of peppermint. African Journal of Biotechnology, 12: 6837-42.

Pany, V. K. and A. Apparao. 1963. Studies on the nutritional physiology of Sclerotium rolfsii Sacc Proceedings of the Indian Academy of Sciences-Section B. Springer. pp. 326-38.

Punja, Z. K. 1985. The Biology, Ecology, and Control of Sclerotium rolfsii. Annual Review of Phytopathology, 23: 97-127.

Punja, Z. K., J. S. Huang and S. F. Jenkins. 1985. Relationship of mycelial growth and production of oxalic acid and cell wall degrading enzymes to virulence in Sclerotium rolfsii. Canadian Journal of Plant Pathology, 7: 109-17.

Punja, Z. K., S. F. Jenkins and R. G. Grogan. 1984. Effect of volatile compounds, nutrients, and source of sclerotia on eruptive sclerotial germination of Sclerotium rolfsii. Phytopathology, 74: 1290-95.

Ritchie, F., R. A. Bain and M. P. McQuilken. 2009. Effects of nutrient status, temperature and pH on mycelial growth, sclerotial production and germination of Rhizoctonia solani from potato. Journal of Plant Pathology, 91: 589-96.

Sachslehner, A., D. Haltrich, B. Nidetzky and K. D. Kulbe. 1997. Production of hemicellulose- and cellulose-degrading enzymes by various strains of Sclerotium rolfsii. Appl Biochem Biotechnol, 63-65: 189-201.

Shen, Y. M., C. H. Chao and H. L. Liu. 2014. Asian Foxtail (Uraria crinita), a New Host for Sclerotium rolfsii from Taiwan. Plant Dis, 98: 1438.

Shim, S. M., Y. H. Oh, K. R. Lee, S. H. Kim, K. H. Im, J. W. Kim, U. Y. Lee, J. O. Shim, M. J. Shim, M. W. Lee, H. S. Ro, H. S. Lee and T. S. Lee. 2005. The characteristics of cultural conditions for the mycelial growth of Macrolepiota procera. Mycobiology, 33: 15-8.

Singh, A. and H. B. Singh. 2004. Control of collar rot in mint (Mentha spp.) caused by Sclerotium rolfsii using biological means. Current science, 87: 362-66.

Sun, S., F. Sun, D. Deng, X. Zhu, C. Duan and Z. Zhu. 2020. First report of southern blight of mung bean caused by Sclerotium rolfsii in China. Crop Protection, 130: 105055.

Survase, S. A., P. S. Saudagar and R. S. Singhal. 2006. Production of scleroglucan from Sclerotium rolfsii MTCC 2156. Bioresourse Technolology, 97: 989-93.

Townsend, B. B. 1957. Nutritional factors influencing the production of sclerotia by certain fungi. Annals of Botany, 21: 153-66.

Zoberi, M. H. 1980. Some nutritional factors regulating formation of sclerotia of Sclerotium rolfsii. Canadian Journal of Botany, 58: 2484-90.


Full Text: PDF

DOI: 10.33687/phytopath.009.01.3066

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Fakher AYED, Hayfa Jabnoun-Khiareddine, Rania Aydi-Ben Abdallah, Mejda Daami-Remadi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.