Molecular and Pathological Variability Associated with Transposable Elements of Botrytis cinerea Isolates Infecting Grape and Strawberry in Egypt
Abstract
Grey mold caused by Botrytis cinerea, is known to cause great losses in most vegetable and fruit crops. Fifty-one isolates of B. cinerea were collected from grape (BCG) and strawberry (BCS) grown in different Egyptian locations. Variation among isolates was demonstrated using fenhexamid resistance and genetic approaches. Isolates were classified into various pathogenic groups depending on their reactions towards lettuce leaves. Genetic variability was identified in all isolates using transposable elements (TEs) analysis which revealed either the presence or absence of boty and flipper transposons. Furthermore, TEs typing of B. cinerea isolates demonstrated four TE types, on the basis of TE distribution in B. cinerea populations, namely, transposa (having both boty and flipper), flipper (possessing only flipper), boty (having only boty), and vacuma (lacking both boty and flipper elements). Transposa type was predominant (43.1%) and both transposa and vacuma isolate types showed no specialization with respect to host plant or plant location, while flipper type revealed a geographical preference in (BCG) isolates. Pathogenicity was also correlated to TE type as isolates containing transposa type revealed some degree of correlation with virulence behaviour, suggesting that transposa populations have higher pathogenic potential as compared to vacuma ones. The sensitivity of sampled isolates was tested against fenhexamid as one of the most important botryticides. Sensitivity to fenhexamid was shown in all isolates from strawberry and grape, grown in different locations, with low EC50 values between 0.012-0.084 μg/ml. This finding provided a cue for effective usage of fenhexamid for grey mold management. The present work demonstrated a correlation between the distribution of TEs and some fungal features such as isolate source and virulence, but no correlation was found between morphological characteristics, TE type, and sensitivity to fenhexamid. Cluster analysis based on phylogenetic tree showed that the Egyptian isolates branched as a separate divergent group from the others retrieved from GenBank, reflecting the presence of sequence polymorphism between the current isolates of B. cinerea and those previously identified.
Keywords
References
Abdel Wahab, H. 2015. Characterization of Egyptian Botrytis cinerea Isolates from Different Host Plants. Advances in Microbiology, 05: 177-89. https://doi.org/10.4236/aim.2015.53017
Abdel Wahab, H. and N. Helal. 2013. Evaluation of Pre-Harvest Bioagent Applications for both Production and Biological Control of Onion and Strawberry Plants under Natural Botrytis Infections. African Journal of Plant Science and Biotechnology, 7: 64-69.
Ahmed, M. F. and E. I. Naim. 1993. Effect of irrigation interval on consumptive use, water use efficiency and crop coefficient of sunflower. Journal of Agricultural Sciences, 1: 1-15.
Albertini, C. and P. Leroux. 2004. A Botrytis cinerea Putative 3-keto Reductase Gene (ERG27) that is Homologous to the Mammalian 17 -Hydroxysteroid Dehydrogenase type 7 gene (17 -HSD7). European Journal of Plant Pathology, 110: 723-33. https://doi.org/10.1023/b:ejpp.0000041567.94140.05
Albertini, C., G. Thebaud, E. Fournier and P. Leroux. 2002. Eburicol 14α-demethylase gene (CYP51) polymorphism and speciation in Botrytis cinerea. Mycological Research, 106: 1171-78. https://doi.org/10.1017/s0953756202006561
Buttner, P., F. Koch, K. Voigt, T. Quidde, S. Risch, R. Blaich, B. Brckner and P. Tudzynski. 1994. Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Current Genetics, 25: 445-50. https://doi.org/10.1007/bf00351784
Chardonnet, C. O., C. E. Sams, R. N. Trigiano and W. S. Conway. 2000. Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology, 90: 769-74. https://doi.org/10.1094/PHYTO.2000.90.7.769
Daboussi, M.-J. and P. Capy. 2003. Transposable Elements in Filamentous Fungi. Annual Review of Microbiology, 57: 275-99. https://doi.org/10.1146/annurev.micro.57.030502.091029
Diolez, A., F. Marches, D. Fortini and Y. Brygoo. 1995. Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Applied and Environmental Microbiology, 61: 103-08. https://doi.org/10.1128/AEM.61.1.103-108.1995
Dufresne, M., A. Hua-Van, H. Abd el Wahab, S. B. M'Barek, C. Vasnier, L. Teysset, G. H. J. Kema and M.-J. Daboussi. 2006. Transposition of a Fungal Miniature Inverted-Repeat Transposable Element Through the Action of a Tc1-Like Transposase. Genetics, 175: 441-52. https://doi.org/10.1534/genetics.106.064360
Ellis, M. and J. Waller. 1974. Sclerotinia fuckeliana (conidial state: Botrytis cinerea). CMI descriptions of pathogenic fungi and bacteria.
Esterio, M., G. Muñoz, C. Ramos, G. Cofré, R. Estévez, A. Salinas and J. Auger. 2011. Characterization of Botrytis cinerea Isolates Present in Thompson Seedless Table Grapes in the Central Valley of Chile. Plant Disease, 95: 683-90. https://doi.org/10.1094/pdis-04-10-0298
Fournier, E., T. Giraud, C. Albertini and Y. Brygoo. 2005. Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia, 97: 1251-67. https://doi.org/10.3852/mycologia.97.6.1251
Fournier, E., T. Giraud, A. Loiseau, D. Vautrin, A. Estoup, M. Solignac, J. M. Cornuet and Y. Brygoo. 2002. Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Molecular Ecology Notes, 2: 253-55. https://doi.org/10.1046/j.1471-8286.2002.00207.x
Fournier, E., C. Levis, D. Fortini, P. Leroux, T. Giraud and Y. Brygoo. 2003. Characterization of Bc-hch, the Botrytis cinerea Homolog of the Neurospora crassa het-c Vegetative Incompatibility Locus, and Its Use as a Population Marker. Mycologia, 95: 251. https://doi.org/10.2307/3762036
Giraud, T., D. Fortini, C. Levis, C. Lamarque, P. Leroux, K. LoBuglio and Y. Brygoo. 1999. Two Sibling Species of the Botrytis cinerea Complex,transposaandvacuma, Are Found in Sympatry on Numerous Host Plants. Phytopathology, 89: 967-73. https://doi.org/10.1094/phyto.1999.89.10.967
Giraud, T., D. Fortini, C. Levis, P. Leroux and Y. Brygoo. 1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology and Evolution, 14: 1177-85. https://doi.org/10.1093/oxfordjournals.molbev.a025727
Karakaya, A. and H. Bayraktar. 2009. Botrytis disease of kiwifruit in Turkey. Australasian Plant Disease Notes, 4: 87-88.
Kumari, S., P. Tayal, E. Sharma and R. Kapoor. 2014. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiological Research, 169: 862-72. https://doi.org/10.1016/j.micres.2014.02.012
Leroux, P., R. Fritz, D. l. Debieu, C. Albertini, C. Lanen, J. Bach, M. Gredt and F. Chapeland. 2002. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58: 876-88. https://doi.org/10.1002/ps.566
Leroux, P., M. Gredt, M. Leroch and A. S. Walker. 2010. Exploring Mechanisms of Resistance to Respiratory Inhibitors in Field Strains of Botrytis cinerea, the Causal Agent of Gray Mold. Applied and Environmental Microbiology, 76: 6615-30. https://doi.org/10.1128/aem.00931-10
Levis, C., D. Fortini and Y. Brygoo. 1997. Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Molecular and General Genetics MGG, 254: 674-80. https://doi.org/10.1007/s004380050465
LÓPez‐Berges, M. S., A. Di Pietro, M. J. Daboussi, H. A. Wahab, C. Vasnier, M. I. G. Roncero, M. Dufresne and C. Hera. 2009. Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large‐scale transposon tagging. Molecular Plant Pathology, 10: 95-107. https://doi.org/10.1111/j.1364-3703.2008.00512.x
Ma, Z. and T. J. Michailides. 2005. Genetic Structure of Botrytis cinerea Populations from Different Host Plants in California. Plant Disease, 89: 1083-89. https://doi.org/10.1094/pd-89-1083
Martinez, F., B. Dubos and M. Fermaud. 2005. The Role of Saprotrophy and Virulence in the Population Dynamics of Botrytis cinerea in Vineyards. Phytopathology, 95: 692-700. https://doi.org/10.1094/phyto-95-0692
Mirzaei, S., E. Mohammadi Goltapeh, M. Shams-Bakhsh, N. Safaie and M. Chaichi. 2009. Genetic and Phenotypic Diversity among Botrytis cinerea Isolates in Iran. Journal of Phytopathology, 157: 474-82. https://doi.org/10.1111/j.1439-0434.2008.01518.x
Möller, E. M., G. Bahnweg, H. Sandermann and H. H. Geiger. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20: 6115-16. https://doi.org/10.1093/nar/20.22.6115
Moyano, C., C. Alfonso, J. Gallego, R. Raposo and P. Melgarejo. 2003. Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. European Journal of Plant Pathology, 109: 515-22. https://doi.org/10.1023/a:1024211112831
Muñoz, C., S. Gómez Talquenca, E. Oriolani and M. Combina. 2010. Genetic characterization of grapevine-infecting Botrytis cinerea isolates from Argentina. Revista Iberoamericana de Micología, 27: 66-70. https://doi.org/10.1016/j.riam.2009.12.006
Pande, S., M. Sharma, G. K. Kishore, L. Shivram and U. N. Mangala. 2010. Characterization of Botrytis cinerea isolates from chickpea: DNA polymorphisms, cultural, morphological and virulence characteristics. African Journal of Biotechnology, 9: 7961-67. https://doi.org/10.5897/AJB10.1361
Rigotti, S. 2002. Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragaria×ananassa Duch.) using PCR. FEMS Microbiology Letters, 209: 169-74. https://doi.org/10.1016/s0378-1097(02)00491-3
Rodríguez, H., L. Aguilar and M. LaO. 1997. Variations in xanthan production by antibiotic-resistant mutants of Xanthomonas campestris. Applied Microbiology and Biotechnology, 48: 626-29. https://doi.org/10.1007/s002530051106
Samuel, S., T. Veloukas, A. Papavasileiou and G. S. Karaoglanidis. 2012. Differences in Frequency of Transposable Elements Presence in Botrytis cinerea Populations from Several Hosts in Greece. Plant Disease, 96: 1286-90. https://doi.org/10.1094/pdis-01-12-0103-re
Schilling, J., J. Vivekananda, M. A. Khan and N. Pandey. 2013. Vulnerability to environmental risks and effects on community resilience in mid-west Nepal and south-east Pakistan. Environment and Natural Resources Research, 3: 27. https://doi.org/10.5539/enrr.v3n4p27
Shirane, N. 1989. Light Microscopic Observation of Nuclei and Mitotic Chromosomes of Botrytis Species. Phytopathology, 79: 728. https://doi.org/10.1094/phyto-79-728
Staats, M. 2004. Molecular Phylogeny of the Plant Pathogenic Genus Botrytis and the Evolution of Host Specificity. Molecular Biology and Evolution, 22: 333-46. https://doi.org/10.1093/molbev/msi020
Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30: 2725-29. https://doi.org/10.1093/molbev/mst197
Tanovic, B., G. Delibasic, J. Milivojevic and M. Nikolic. 2009. Characterization of Botrytis cinerea isolates from small fruits and grapevine in Serbia. Archives of Biological Sciences, 61: 419-29. https://doi.org/10.2298/abs0903419t
Wahab, H. A., M. Aboelghar, M. S. Moustafa and A. M. Ali. 2019. Hyperspectral analysis of Botrytis cinerea infected lettuce. EPH-International Journal of Agriculture and Environmental Research, 5: 26-42.
White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics PCR protocols PCR Protocols. Elsevier. pp. 315-22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
DOI: 10.33687/phytopath.008.02.2943
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Wagih Elsayed, Hala Abdel-Wahab, Mohamed Shehata, Magda Fahmy, Mahmoud Gaber
This work is licensed under a Creative Commons Attribution 4.0 International License.