Biological Control Technology Utilizing Heterorhabditis bacteriophora and Steinernema carpocapsae

Gabby Downs, Devang Upadhyay, Sivanadane Mandjiny, Jeff Frederick, Leonard Holmes


Entomopathogenic nematodes (in the genus Steinernema and Heterorhabditis) have been studied and successfully commercialized as biological control agents. These organisms are highly virulent and safe for the non-target environment, animals and humans. For at least 200 target species, the nematode-bacteria complex has the potential to become a mass-marketed agricultural biopesticide. However, before nematodes can be successfully integrated into the agricultural system as a regular-use, “go-to” biopesticide, it is necessary to develop economical manufacturing processes. There are several manufacturing platforms: in vitro solid fermentation; in vitro liquid fermentation; and in vivo production. This review presents an analysis of each approach and discusses the advantages and disadvantages relative to the cost of production, technical expertise required, and quality of the final product.


Heterorhabditis bacteriophora; Steinernema carpocapsae; beneficial nematodes; fermentation technology


Abu Hatab, M. A. and R. Gaugler. 1999. Lipids of in Vivo and in Vitro Cultured Heterorhabditis bacteriophora. Biological Control, 15: 113-18.

Alsaidi, A., J. Valencia, D. Upadhyay, S. Mandjiny, R. Bullard-Dillard, J. Frederick and L. Holmes. 2017. Mass production of the beneficial nematode Steinernema carpocapsae using solid state fermentation. Journal of Advanced Agricultural Technologies, 5: 276-80.

Bale, J. S., J. C. van Lenteren and F. Bigler. 2008. Biological control and sustainable food production. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 761-76.

Bedding, R. A. 1981. Low Cost in Vitro Mass Production of Neoaplectana and Heterorhabditis Species (Nematoda) for Field Control of Insect Pests. Nematologica, 27: 109-14.

Brown, I. M., D. I. Shapiro-Ilan and R. R. Gaugler. 2006. Entomopathogenic nematode infectivity enhancement using physical and chemical stressors. Biological Control, 39: 147-53.

Chavarría-Hernández, N., J.-J. Espino-García, R. Sanjuan-Galindo and A.-I. Rodríguez-Hernández. 2006. Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey. Journal of Biotechnology, 125: 75-84.

Converse, V. and R. W. Miller. 1999. Development of the one-on-one quality assessment assay for entomopathogenic nematodes. Journal of Invertebrate Pathology, 74: 143-48.

Ehlers, R.-U. 2001. Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology, 56: 623-33.

Follett, P. A., J. J. Duan and R. H. Messing. 2000. Evaluating nontarget effects of classical biological control: fruit fly parasitoids in Hawaii as a case study. In, Nontarget effects of biological control Springer: Berlin, Germany.

Gerdes, E. 2015. Photorhabdus Luminescens: Virulent Properties and Agricultural Applications. American Journal of Agriculture and Forestry, 3: 171.

Gerdes, E., D. Upadhyay, S. Mandjiny, R. Bullard- Dillard, M. Storms, M. Menefee and L. Holmes. 2016. Heterorhabditis bacteriophora: ecofriendly biological control agent. European Scientific Journal, Special Edition: 109-21.

Ghosh, S. 2011. Role of Biological Control in Conserving Biodiversity. In: A Ghosh, S P Agarwala and B Sau (eds.), Loss of biodiversity and its ethical implications Sadesh: 101C, Vivekanda Road, Kolkata

Gulley, K., D. Upadhyay, S. Mandjiny, R. Bullard- Dillard, M. Storms, M. Menefee and L. Holmes. 2015. Effect of environmental factors on growth kinetics of Photorhabdus luminescens Phase-I cells using a 2L A+ sartorius stedim biostat® fermentation system. International Journal of Recent Scientific Research, 6: 7684-88.

Hirao, A. and R.-U. Ehlers. 2009. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Applied Microbiology and Biotechnology, 85: 507-15.

Holmes, L., D. Upadhyay and S. Mandjiny. 2016. Biological control of agriculture insect pests. European Scientific Journal, Special Edition: 228-37.

Inman, F. L., S. Singh and L. D. Holmes. 2012. Mass Production of the Beneficial Nematode Heterorhabditis bacteriophora and Its Bacterial Symbiont Photorhabdus luminescens. Indian Journal of Microbiology, 52: 316-24.

Johnson, M., D. Upadhyay, S. Mandjiny, R. Bullard- Dillard, J. Frederick and L. Holmes. 2016. Mass production of the beneficial nematode Heterorhabditis bacteriophora on solid media using solid-state fermentation technology. International Journal of Agriculture Sciences, 8: 3029-31.

Kaur, R. 2013. Virulence of symbiotic bacteria associated with entomopathogenic nematodes for insect pest management, Punjab Agricultural University. Ludhiana, India.

Kergunteuil, A., M. Bakhtiari, L. Formenti, Z. Xiao, E. Defossez and S. Rasmann. 2016. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores. Insects, 7: 70.

Kooliyottil, R., D. Upadhyay, F. Inman Iii, S. Mandjiny and L. Holmes. 2013. A comparative analysis of entomoparasitic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae</i&gt. Open Journal of Animal Sciences, 03: 326-33.

Lewis, E. E., J. Campbell, C. Griffin, H. Kaya and A. Peters. 2006. Behavioral ecology of entomopathogenic nematodes. Biological Control, 38: 66-79.

Mahmoud, M. F. 2016. Biology and Use of Entomopathogenic Nematodes in Insect Pests Biocontrol, A Generic View. Cercetari Agronomice in Moldova, 49: 85-105.

Noosidum, A., A. K. Hodson, E. E. Lewis and A. Chandrapatya. 2010. Characterization of new entomopathogenic nematodes from Thailand: foraging behavior and virulence to the greater wax moth, Galleria mellonella L.(Lepidoptera: Pyralidae). Journal of nematology, 42: 281.

O'Campo, J., D. Upadhyay, S. Mandjiny, R. Bullard-Dillard, J. Frederick and L. Holmes. 2017. Photorhabdus luminescens Phase II cells growth kinetic study using a 2L A plus sartorius stedim biostat® fermentation system. European Scientific Journal, Special Edition: 325-35.

Patterson, W. 2015. Attractant Role of Bacterial Bioluminescence of Photorhabdusluminescenson a Galleria mellonella Model. American Journal of Life Sciences, 3: 290.

Ramakuwela, T., J. Hatting, M. D. Laing, S. Hazir and N. Thiebaut. 2016. In vitrosolid-state production ofSteinernema innovationiwith cost analysis. Biocontrol Science and Technology, 26: 792-808.

Shapiro-Ilan, D. I., R. Han and C. Dolinksi. 2012. Entomopathogenic nematode production and application technology. Journal of nematology, 44: 206.

Smart Jr, G. C. 1995. Entomopathogenic nematodes for the biological control of insects. Journal of nematology, 27: 529.

Tofangsazi, N., S. Arthurs and R. Giblin-Davis. 2012. Entomopathogenic Nematodes (Nematoda: Rhabditida: families Steinernematidae and Heterorhabditidae) IFAS Extension Service. University of Florida, USA. pp. 01-05.

Upadhyay, D. 2015. Lab-scale in vitro Mass Production of the Entomopathogenic Nematode Heterorhabditis bacteriophora Using Liquid Culture Fermentation Technology. American Journal of Bioscience and Bioengineering, 3: 203.

Upadhyay, D., R. Kooliyottil, S. Mandjiny, F. L. Inman III and L. D. Holmes. 2013. Mass production of the beneficial nematode Steinernema carpocapsae utilizing a fed-batch culturing process. ESci J. Plant Pathology, 2: 52-58.

Vashisth, S., Y. S. Chandel and P. K. Sharma. 2013. Entomopathogenic nematodes - A review. Agricultural Reviews, 34: 163.

Wouts, W. M. 1981. Mass production of the entomogenous nematode Heterorhabditis heliothidis (nematoda: Heterorhabditidae) on artificial media. Journal of nematology, 13: 467-69.

Full Text: PDF

DOI: 10.33687/phytopath.008.02.2890


  • There are currently no refbacks.

Copyright (c) 2019 Gabby Downs, Devang Upadhyay, Sivanadane Mandjiny, Jeff Frederick, Leonard Holmes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.