Combination of Different Antagonistic Bacteria to Control of Potato Blackleg Disease Caused by Pectobacterium atrosepticum under Greenhouse and Field Conditions

Hoda H. El-Hendawy, Kamal A. M. Abo-Elyousr

Abstract


Three different antagonistic bacterial isolates, Pseudomonas fluoresces (Pf2), Bacillus subtilis(Bs3) and Rahnella acquatilis (Ra39) restricted the growth of Pectobacterium atrosepticum, the causal agent of black leg disease of potato, in vitro.   Under greenhouse and field conditions, potato plants pre-treated with the three antagonistic bacterial isolates, individually or in combination, showed reduced disease severity relative to non-treated control plants. All isolates produced siderophores in different degrees but did not produce indole acetic acid (IAA) or hydrogen cyanide (HCN).The obtained results indicated that combination of Pseudomonas fluoresces (Pf2), Bacillus subtilis (Bs3) and Rahnella acquatilis (Ra39) is beneficial in controlling black leg disease of potato caused by pectobacterium atrosepticum.


Keywords


Potato; biological control; Pseudomonas fluorescens; Bacillus subtilis; Rahnella acquatilis

References


Abeysinghe, S. 2009. Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RU01 on biological control of Rhizoctonia solani on Solanum melongena and Capsicum annuum. Plant Pathology Journal, 8, 9-16.

Abo-Elyousr, K.A. and H. H. El-Hendawy. 2008. Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Protection 27, 1118-1124.

Ahmad, F., I. Ahmad and M. S. Khan. 2008. Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiology Research, 163, 173-181.

Alexander, B.D. and D. A. Zuberer. 1991. Use of Chrome Azurol S reagent to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12, 39-45.

Arshad, M. and W. T. Frankenberger. 1993. Microbial production of plant growth regulators. Marcel and Dekker, New York, pp. 307–347.

Bdliya, B.S. and B. Dahiru. 2006. Efficacy of some plant extracts on the control of potato tuber soft rot caused by Erwinia carotovora ssp. carotovora. Journal of Plant Protection Research, 46, 285-294.

Bell, C.R., G. A. Dickie and J. W. Chan. 1995. Variable response of bacteria isolated from grape vine xylem to control grape crown gall disease in plants. American Journal of Enology and Viticulture, 46, 499-508.

Bric, J.M., R. M. Bostock and S. E. Silverstone. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.

Burr, T.J., M. N. Schroth and T. Suslow. 1978. Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68, 1377–1383.

Czajkowski, R., M. C. M. Perombelon, J. A. Van Veen and J. M. Van Der Wolf. 2011. Control of blackleg and tubersoft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 10, 1365–3059.

Dave, B. P. and H, C. Dube. 2000. Regulation of siderophore production by iron Fe(III) in certain fungi and fluorescent Pseudomonas. Indian Journal of Experimental Biology, 38, 297–299

De Boer, J. M., Y. Yan, X. Wang, G. Smant, R. S. Hussey, E. L. Davis and T. J. Baum. 1999Developmental expression of secretory _-1,4- endoglucanases in the subventral esophageal glands of Heterodera glycines. Molecular Plant-Microbe Interactions, 12, 663–669

De Boer, S. H. and A. Kelman. 1978. Influence of oxygen concentration and storage factories on susceptibility of potato tubers to bacterial soft rot (Erwinia carotovora). Potato Research, 21, 65-80.

Diallo, S., A. Crépin, C. Barbey, N. Orange, J. F. Burini and X. Latour. 2011. Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiology Ecology, 75,351–364.

Douches, D.S., D. Maas, K. Jastrzebski and R. W. Chase. 1996. Assessment of potato Breeding progress in the USA over the last century. Crop Science, 36, 1544-52.

Eckert, J.W. and J. M. Ogawa. 1988. The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annual Review of Phytopathology, 26, 433-69.

EI-Hendawy, H.H., M. E. Osman and N. M. Sorour. 2003. Characterization of two antagonistic strains of Rahnella aquatilis isolated from soil in Egypt. Folia Microbiology, 48, 799-804.

El-Hendawy, H. H., M. E. Osman and N. M. Sorour2005. Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiological research, 160(4), 343-352.

FAO. 2008. International Year of the Potato 2008, New Light on a Hidden Treasure. Food and Agriculture Organization of the United Nations, Rome.

Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359.

Geels, F. P. and B. Schippers. 1983. Reduction of yield depressions inhigh frequency potato cropping soil after seed tuber treatmentwith antagonistic fluorescent Pseudomonas spp. Phytopathology Z, 108, 207–214.

Glick, B. R. 2015. Biocontrol mechanisms, In: Beneficial Plant-Bacterial Interactions. pp: 123-157. Springer International Publishing Switzerland.

Glick, B. R. 1995. The enhancement of plant growth byfree living bacteria. Canadian Journal Microbiology, 41, 109–114.

Gross, D. C. 1988. Maximizing rhizosphere populations of fluorescent pseudomonads on potatoes and their effects on Erwinia carotovora. American Potato Journal, 65, 697–709.

Guan, T. T. Y., G. Blank and R. A. Holley. 2005. Survival of pathogenic bacteria in pesticide solutions and on treated tomato plants. Journal Food Protction, 68, 296–304.

Hashem, M. and K. A. Abo-Elyousr. 2011. Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Protection, 30, 285-292.

Hossain, M. 1987. The Antagonistic effects of fluorescent Pseudomonas spp on plant growth and the control of soft rot and black leg of potato. plantphthogcnic bacteria. Martinus Nijhoff Publishers.The Netherlands. U.S.A. P. 935

Ishimaru, C.A., E. J. Klos and R. R. Brubaker. 1988. Multiple antibiotic production by Erwinia herbicola. Phytopathology, 78, 746-750.

Jacobsen, B.J., N. K. Zidack and B. J. Larson. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology, 94, 1272–1275.

Joseph, B., R. Ranjan Patra and R. Lawrence. 2007. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicerarietinum L.). International Journal of Plant Production, 2, 141-152

Kavitha, R., and S. Umesha. 2007. Prevalence of bacterial spot in tomato fields of Karnataka and effect of biological seed treatment on disease incidence. Crop Protection, 26, 991-997.

Klement, Z., K. Rudolph and D. C. Sands. 1990. Methods in Phytobacteriology. Akademiai Kiado, Budapest, Pages: 568.

Kloepper, J., J. Leong, M. Teintze and M. Schroth. 1980. Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Current Microbiology, 4, 317-20.

Kloepper, J. W. 1983. Effect of seed piece inoculation with plant growth promoting rhizobacteria on populations of Erwniacarotovoraon potato roots and in daughter tubers. Phytopathology, 73, 217-9.

Kloepper, J. W. and M. N. Schroth. 1980. Development of a powder formulation of Rhizobacteriafor inoculation of potato seed pieces. Phytopathology, 71, 590-592.

Lelliot, R. A. and R. S. Dickey. 1984. Erwinia, pp. 469-476. In N.R. Krieg and J.G. Holt (ed.), Bergey, s Manual of Systematic Bacteriology, vol. 1. The Williams and Wilkins Co., Baltimore.

Loper, J. E. and M. D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 65, 5357-63.

Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiology Plant, 1, 142-146.

Montesinos, E. 2003. Development, registration and commercialization of microbial pesticides for plant protection. Intrnational Microbiology, 6, 245–252.

Obradovic, A., J. B. Jones, M. T. Momol, B. Balgoh and S. M. Olson. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Diseases, 88, 736–740.

Perombelon, M. C. M. and A. Kelman. 1980. Ecology of the soft rot Erwinia. Annual Review of Phytopathology, 18, 361-387.

Roberto, B., L. Scarponi, M. Ferrara, P. Sidoti and A. Bertona. 2002. Induction of systemic acquired resistance in pepper plants by acibenzolar-s-methyl against bacterial spot disease. European Journal of Plant Pathology, 108, 41-49.

Ross, H. 1986. Potato breeding- problems and perspectives. Advances in Plant Breeding Series, No 13.

SAS Institute Inc., 1996. SAS Institute Inc., SAS online Doc®, Version 8, Cary, NC, USA.

Shanmugam, V. and N. Kanoujia. 2011 Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biological Control, 57, 85-93.

Sharga, B. M. and G. D. Lyon. 1998. Bacillus subtilis BS 107 as anantagonist of potato blackleg and soft rot bacteria. Canadian Journal Microbiology, 44, 777–783.

Siddiqui, A., D. Haas and S. Heeb. 2005. Extracellular Protease of Pseudomonas fluorescens CHA0, a Biocontrol Factor with Activity against the Root-Knot Nematode Meloidogyne incognita. Applied and Environmental Microbiology, 71, 5646-5649.

Van der Wolf, J. M. and S. H. De Boer. 2007. Bacterial pathogens of potato. In: Vreugdenhil D, ed. Potato Biology and Biotechnology: Advances and Perspectives. Delft, The Netherlands: Elsevier, 595-617.

Wani, P. A., M. S. Khan and A. Zaidi. 2007. Chromium reduction, plant growth promoting-potentials, and metal solubilization by Bacillus sp. Isolated from alluvial soil. Current Microbiology, 54, 237-243.

Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379-407.

Wright, P. J., C. M. Triggs and G. K. Burge. 2005. Control of bacterial soft rot of calla (Zantedeschiaspp.) by pathogen exclusion, elimination and removal. New Zealand Journal of Crop and Horticultural Science, 33, 117-123.

Xie, H., J. J. Pasternak and B. R. Glick. 1996. Isolation and characterization ofmutants of plant growth promoting rhizobacterium Pseudomonas putida GR 12-2 that over produce indoleaceticacid. Current Microbiology, 32, 67–71.

Xu, G. W. and D. C. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology, 76, 414-422.

Yaganza, E.S., J. Arul and R. J. Tweddell. 2004Effect of pre-storage application of different organic and inorganic salts on stored potato quality. Potato Research, 46, 167-178.


Full Text: PDF XPS

DOI: 10.33687/phytopath.005.01.1647

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Hoda H. El-Hendawy, Kamal A. M. Abo-Elyousr

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.