Allelopathic Potential of Neem and Darek Plant Parts on Barley and Spinach Growth
Abstract
The present study was designed to investigate the comparative allelopathic evaluation of different parts of Azadirachta indica A. Juss. and Melia azedarach L. on the seed germination and seedling growth of Hordeum vulgare (barley) and Spinacia oleracea (spinach). For aqueous extract preparation different parts i.e., leaf, bark and stem of both plant species were collected. After shade drying they were ground to fine powder by using pestle and mortar. The extracts were prepared in various concentrations (0.5%, 1% and 2%) by overnight soaking the ground powder in distilled water and then filtration of the solutions was performed. The filter paper method was use in this study for allelopathic screening. Results revealed that leaf extract of Azadirachta indica significantly inhibited seed germination of spinach (81%) at 1% concentration. Similarly, the leaf extract of Melia azedarach also retarded seed germination of spinach up to 48% at higher concentration (2%). But its bark extracts slightly stimulated barley seed germination. For seedling growth, the bark extract of Melia azedarach strongly suppressed spinach growth. On the other hand, the growth of spinach was exponentially stimulated under the influence of bark extract of Azadirachta indica. The stem extracts of both donor species stimulated seedling growth of barley. It was concluded that the allelopathic effects of both tree species are crop dependent. However, there is a possibility of presence of negativelly affecting allelochemcials in different plant parts of tree species. These allelochemicals can further be characterized in order to use these species as border crops around various agricultural lands.
Keywords
Full Text:
PDFReferences
Abd El–Hamid, H.A., L.M.N. Ibrahim, M.Y. Ammar and M.A. Helmy. 2017. Allelopathic effect of neem (Azadirachta indica A. Juss) aqueous leaf extract on the germination and growth of some selected crops and weeds. Biolife, 5, 428-436.
Abouziena, H.F. and W.M. Haggag. 2016. Weed control in clean agriculture: A review. Planta Daninha, 34, 377-392.
Ain, Q., W. Mushtaq, M. Shadab and M.B. Siddiqui. 2023. Allelopathy: An alternative tool for sustainable agriculture. Physiology and Molecular Biology of Plants, 1-17.
Alzohairy, M.A. 2016. Therapeutics role of Azadirachta indica (Neem) and their active constituents in disease prevention and treatment. Evidence-Based Complementary and Alternative Medicine, 2016.
Ashraf, R., B. Sultana, S. Yaqoob and M. Iqbal. 2017. Allelochemicals and crop management: A review. Current Science, 3(1): 1-13.
Bhadoria, P.B.S. 2010. Allelopathy: A natural way towards weed management. American Journal of Experimental Agriculture, 1(1): 7-20.
Dahiya S, S. Kumar, R.S. Khedwal and S.R. Jakhar. 2017. Allelopathy for sustainable weed management. Journal of Pharmacognosy and Phytochemistry, 6, 832–837.
Djanaguiraman, M., P. Ravishankar and U. Bangarusamy. 2002. Effect of Eucalyptus globulus on green gram, black gram and cowpea. Allelopathy Journal, 10(2): 157-161.
Dougnon, G. and M. Ito. 2022. Essential oils from Melia azedarach L. (Meliaceae) leaves: chemical variability upon environmental factors. Journal of Natural Medicines, 1-11.
Farag, M., M.H. Ahmed, H. Yousef and A.H. Abdel-Rahman. 2011. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Zeitschrift für Naturforschung C, 66(3-4): 129-135.
Farooq, N., T. Abbas, A. Tanveer and K. Jabran. 2020. Allelopathy for weed management. Co-evolution of Secondary Metabolites, 505-519.
Gray, D.J. and R.N. Trigiano. 2004. Getting started with tissue culture media preparation, sterile technique, and laboratory equipment. In Plant Tissue Culture Development and Biotechnology, 15-37.
Gul, S., F. Hussain, S. Abidullah, A. Gul and M. Shuaib. 2022. Allelopathic effect of Melia azedarach L. and Populus nigra L. on germination and growth of Brassica campestris L. Catrina. The International Journal of Environmental Sciences, 25(1): 11-17.
Gumilar R.A., N. Wijayanto and A.S. Wulandar, 2017. Effect of Azadirachta excelsa and Melia azedarach extracts on soybean germination. Nusantara Bioscience 9(4): 346-351.
Habluetzel, A., B. Pinto, S. Tapanelli, J. Nkouangang, M. Saviozzi, G. Chianese, A. Lopatriello, A.R. Tenoh, R.S. Yerbanga, O. Taglialatela-Scafati and F. Esposito. 2019. Effects of Azadirachta indica seed kernel extracts on early erythrocytic schizogony of Plasmodium berghei and pro-inflammatory response in inbred mice. Malaria Journal, 18, 1-9.
Hao, Z.P., Q. Wang, P. Christie and X.L. Li. 2007. Allelopathic potential of watermelon tissues and root exudates. Scientia Horticulturae, 112(3): 315-320.
Hemdan, B.A., A. Mostafa, M.M. Elbatanony, A.M. El-Feky, T. Paunova-Krasteva, S. Stoitsova, M.A. El-Liethy, G.E. El-Taweel and M.A. Mraheil. 2023. Bioactive Azadirachta indica and Melia azedarach leaves extracts with anti-SARS-CoV-2 and antibacterial activities. Plos one, 18(3): p.e0282729.
Hussain, M.I. and M.J. Reigosa. 2017. Evaluation of Photosynthetic Performance And Carbon Isotope Discrimination In Perennial Ryegrass (Lolium Perenne L.) Under Allelochemicals Stress. Ecotoxicology, 26, 613-624.
Jabran, K. and B.S. Chauhan. 2015. Weed management in aerobic rice systems. Crop Protection, 78, 151-163.
Kanwal, Q., I. Hussain, L.H. Siddiqui and A. Javaid. 2011. Antimicrobial activity screening of isolated flavonoids from Azadirachta indica leaves. Journal of the Serbian Chemical Society, 76(3): 375-384.
Kato-Noguchi, H. and F.A. Macías. 2005. Effects of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds. Journal of Plant Physiology, 162(12): 1304-1307.
Kaur, P. and P. Leela. 2023. Effects of Azadirachta indica leaf extract on growth and development of Oryza sativa (L) and Zea mays (L). Allelopathy Journal, 60(2): 147.
Khan, M., M. Zakaria, F. Ali, F. Hussain and I.S. Musharaf. 2016. Allelopathic effect of Populus nigra bark on Zea mays in agroforestry ecosystems. Global Journal of Science Frontier Research, 16, 21-27.
Khatun, M.R., S. Tojo, T. Teruya and H. Kato-Noguchi. 2023. Trewia nudiflora Linn, a medicinal plant: Allelopathic potential and characterization of bioactive compounds from its leaf extracts. Horticulturae, 9(8): 897.
Latif, S., G. Chiapusio and L.A. Weston. 2017. Allelopathy and the role of allelochemicals in plant defense. In Advances in Botanical Research (Vol. 82, pp. 19-54). Academic Press.
Lawan, S.A., M. Suleiman and S.U. Yahaya. 2011. Inhibition of germination and growth behavior of some cowpea varieties using neem (Azadiracta indica) leaf water extracts. Bayero Journal of Pure and Applied Sciences, 4(2); 169-172.
Lekha, K. and P. Menakashree. 2018. Ethno medicinal value of plants in Tiruchengode area of Namakkal district, Tamil Nadu, India. Journal of Medicinal Plants, 6(1): 257-260.
Lungu, L., C.V. Popa, J. Morris and M. Savoiu. 2011. Evaluation of phytotoxic activity of Melia azedarach L. extracts on Lactuca sativa L. Romanian Biotechnological Letters, 16(2): 6089-6095.
Masum, S.M., M.A. Hossain, H. Akamine, J.I. Sakagami, T. Ishii, S. Gima, T. Kensaku and P.C. Bhowmik. 2018. Isolation and characterization of allelopathic compounds from the indigenous rice variety ‘Boterswar’ and their biological activity against Echinochloa crus-galli L. Allelopathy Journal, 43(1): 31-42.
Motmainna, M., A.S. Juraimi, M.S. Ahmad-Hamdani, M. Hasan, S. Yasmin, M.P. Anwar and A.M. Islam. 2023. Allelopathic potential of tropical plants—a review. Agronomy, 13(8); 2063.
Nerome, K., K. Shimizu, S. Zukeran, Y. Igarashi, K. Kuroda, S. Sugita, T. Shibata, Y. Ito and R. Nerome. 2018. Functional growth inhibition of influenza A and B viruses by liquid and powder components of leaves from the subtropical plant Melia azedarach L. Archives of Virology, 163, 2099-2109.
Novak, M. and N. Novak. 2019. Allelopathic effect of tree of heaven (Ailanthus altissima (Mill.) Swingle) on initial growth of the barnyard grass (Echinochloa crusgalli (L.) P. Beauv.). Fragmenta phytomedica, 33(4): 58-72.
Parvez, S.S., M.M. Parvez, Y. Fujii and H. Gemma. 2004. Differential allelopathic expression of bark and seed of Tamarindus indica L. Plant Growth Regulation, 42(3): 245-252.
Patanè, C., A. Pellegrino, S.L. Cosentino and G. Testa. 2023. Allelopathic effects of Cannabis sativa L. aqueous leaf extracts on seed germination and seedling growth in durum wheat and barley. Agronomy, 13(2): 454.
Phuwiwat, W., W. Wichittrakarn, C. Laosinwattana and M. Teerarak M. 2012. Inhibitory effects of Melia azedarach L. leaf extracts on seed germination and seedling growth of two weed species. Pakistan Journal of Weed Scientific Research, 18 (special issue), 485-492.
Pratap U.B., K.S. Pant, D. Nirala and P. Tiwari. 2022. Allelopathic influence of Melia composita Wild. on the performance of vegetable crops. The Pharma Innovation Journal, 11(12): 3737-3742.
Rehman, S., B. Shahzad, A.A. Bajwa, S. Hussain, A. Rehman, S.A. Cheema, T. Abbas, A. Ali, L. Shah, S. Adkins and P. Li. 2019. Utilizing the allelopathic potential of Brassica species for sustainable crop production: A review. Journal of Plant Growth Regulation, 38, 343-356.
Schandry, N. and C. Becker. 2020. Allelopathic plants: Models for studying plant–interkingdom interactions. Trends in Plant Science, 25(2): 176-185.
Shahid, M. and M.S. Khan. 2017. Assessment of glyphosate and quizalofop mediated toxicity to green gram [Vigna radiata (L.) Wilczek], stress abatement and growth promotion by herbicide tolerant Bradyrhizobium and Pseudomonas species. International Journal of Current Microbiology and Applied Sciences, 6(12): 3001-3016.
Sisodia, S. and M.B. Siddiqui. 2010. Allelopathic effect by aqueous extracts of different parts of Croton bonplandianum Baill. on some crops and weed plants. Journal of Agricultural Extension and Rural Development, 2(1): 22-28.
Sivaraj, I., S. Nithaniyal, V. Bhooma, U. Senthilkumar and M. Parani. 2018. Species delimitation of Melia dubia Cav. from Melia azedarach L. complex based on DNA barcoding. Botany, 96(5): 329-336.
Soleymani, A. and M.H. Shahrajabian. 2012. Study of allelopathic effects of sesame (Sesamum indicum) on canola (Brassica napus) growth and germination. International Journal of Agriculture and Crop Sciences, 4(4): 183-186.
Srivastava, S.K., B. Agrawal, A. Kumar and A. Pandey. 2020. Phytochemicals of Azadirachta indica source of active medicinal constituent used for cure of various diseases: A Review. Journal of Scientific Research, 64(1): 385-90.
Steel, R.G.D., J.H. Torrie and D.A. Dickey. (1997). Principles and Procedures of Statistics: A Biometrical Approach, 3rd edition, pp: 352-358. McGraw Hill Book Co. Inc., New York, USA.
Stefanello, R., R.A.M. Barreto, F.W. Cervo and A.L. da Silva. 2024. Contribution to the allelopathic study of Melia azedarach L. on the germination and initial growth of Fagopyrum esculentum Moench and Cyperus iria L. seeds. Gaia Scientia, 17(3): 108-117.
Subtain, M.U., M. Hussain, M. Tabassam, M.A.R. Ali, M.A. Ali, M. Mohsin and M. Mubushar. 2014. Role of allelopathy in the growth promotion of plants. Scientia Agriculturae, 2(3): 141-145.
Sultana, S., H.M. Asif, N. Akhtar, M. Waqas and S.U. Rehman. 2014. A Comprehensive review on ethnobotanical uses, phytochemistry and pharmacological properties of Melia azedarach L. Asian Journal of Pharmaceutical Research and Health Care, 6(1): 26-32.
Thiébaut, G., M. Tarayre and H. Rodríguez-Pérez. 2019. Allelopathic effects of native versus invasive plants on one major invader. Frontiers in Plant Science, 10, 854.
Umer, A., Z. Yousaf, F. Khan, U. Hussain, A. Anjum, Q. Nayyab and A. Younas. 2010. Evaluation of allelopathic potential of some selected medicinal species. African Journal of Biotechnology, 9(37): 6194-6206.
Yuliyani, E.D., S. Darmanti and E.D. Hastuti. 2019. Allelochemical effects of Chromolaena odorata L. against photosynthetic pigments and stomata of Ageratum conyzoides L. leaves. In Journal of Physics, Conference Series (Vol. 1217, No. 1, p. 012149). IOP Publishing.
Zeng, R.S. 2008. Allelopathy in Chinese ancient and modern agriculture. Allelopathy in Sustainable Agriculture and Forestry, 39-59.
DOI: https://doi.org/10.33687/planthealth.03.01.4942
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.