Impacts of Climate Change on the Number of Days per Generation of the Egg-Parasitoid Telenomus Remus Nixon, 1937 (Hymenoptera: Scelionidae) in Egypt

Ahmed Hamed El Kenawy, Hassan Ahmed Hassan, Mohamed Kamel Abdel-samed Hamza, Wael El-zaher Abd El-Hafeez El-Sheikh


In this research, we forecasted both the degree-day units and annual generations of the egg parasitoid Telenomus remus Nixon, which parasitizes fall armyworm (Spodoptera frugiperda). The aim was to comprehend its potential spread across diverse agro-climatic zones, considering both current conditions and potential future climates. This was achieved by examining the correlation between degree-day units and population fluctuations. Climate change data from the HadCM3 model was utilized, focusing on A1 scenarios recommended by the Intergovernmental Panel on Climate Change (IPCC). We aimed to evaluate how temperature projections are anticipated to impact the annual generations in three Egyptian governorates. The investigation revealed that T. remus populations in Aswan, an Upper Egyptian governorate, exhibited a higher number of generations compared to other regions, namely El Sharkia and Beni Suef governorates, in the current climate. The completion of generations by T. remus in El Sharkia, Beni Suef, and Aswan took 13.42, 12.6, and 10.08 days, respectively. The results highlighted that the average generation period in 2021 was the longest, reaching 13.42 ± 6.17 days in El Sharkia governorate. Predictions suggest that T. remus is anticipated to undergo 23 generations between 2040 and 2060, indicating a two-generation increase from 2021. Conversely, in the Beni Suef governorate, where T. remus completed generations in 10.86 ± 5.72 days, the generation period was the longest in 2021. Projections indicate that T. remus is expected to have 24 generations in 2040 and 28 generations in 2060, compared to 22 generations in 2021. Additionally, Aswan’s T. remus is forecasted to experience 32 generations in 2040 and 35 generations in 2060, up from 29 generations in the 2021 climate. The duration of the first generation took 13, 11, and 12 days in the years 2021, 2040, and 2060, respectively. A comprehensive understanding of thermal requirements and biological factors is crucial for accurately predicting generation duration, serving as a valuable reference for the mass production and preservation of parasitoids.


Climate Change; Prediction; Degree day units; Generations; Telenomus remus; Spodoptera frugiperda.

Full Text:



Abdala-Roberts, L., Puentes, A., Finke, D.L., Marquis, R.J., Montserrat, M., Poelman, E.H., Björkman, C., 2019. Tri-trophic interactions: bridging species, communities and ecosystems. Ecology Letters 22, 2151-2167.

Allen, M., Tanaka, K., Macey, A., Cain, M., Jenkins, S., Lynch, J., Smith, M., 2021. Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. Environmental Research Letters, 16(7), 074009.

Baskerville, G.L., Emin, P., 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50(3), 514-517.

Bleicher, E., Parra, J.R., 1990. Espécies de Trichogramma parasitóides de Alabama argillacea. II. Tabela de vida de fertilidade e parasitismo de três populações. Pesquisa Agropecuária Brasileira 25, 207-214.

Bueno, R.C., Carneiro, T.R., Pratissoli, D., Bueno, A.D., Fernandes, O.A., 2008. Biology and thermal requirements of Telenomus remus reared on fall armyworm Spodoptera frugiperda eggs. Ciência Rural 38, 1-6.

Cave, R.D., 2000. Biology, ecology and use in pest management of Telenomus remus. Biocontrol News and Information 21, 21-26.

Chiang, H., 1985. Insects and their environment 128-161. In: R.E. Pfadt (ed.) Fundamentals of Applied Entomology. MacMillan Publishing Company, NY, USA.

Cornelissen, T., 2011. Climate change and its effects on terrestrial insects and herbivore patterns. Neotropical Entomology 40, 155-163.

Daoud, M.A., El-saadny, G.B., Mariy, F.M.A., Ibrahim, M.Y., 1999. The thermal threshold uints for Phtorimaea operculelia (Zeller). Annals of Agricultural Sciences 44(1), 379-393.

Evans, N., Baierl, A., Semenov, M.A., Gladders, P., BDL, F., 2008. The range and severity of a plant disease increased by global warming. Journal of the Royal Society Interface 5,525-531.

Gómez, H., 1987. Biología de Telenomus remus Nixon (Hym: Scelionidae). Revista Peruana De Entolomogía 30, 29-32.

Goodenough, J.L., Hartstack, A.W., King, E.G., 1983. Developmental models for Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) reared on four hosts. Journal of Economic Entomology 76, 1095-1102.

Grassberger, M., Frank, C., 2003. Temperature-related development of the parasitoid wasp nasonia vitripennis as forensic indicator. Medical and Veterinary Entomology 17(3), 257-262.

Haddad, M.L., Moraes, R.C.B., Parra, J.R.P., 1995. MOBAE, Modelos Bioestatísticos Aplicados à Entomologia. Manual Piracicaba, ESALQ/USP p. 44.

Hernández, D., Díaz, F., 1996. Efecto de la temperatura sobre el desarrollo de Telenomus remus Nixon (Hymenoptera: Scelionidae) parasitoide de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Boletin de Entomologia Venezolana 11, 149-153

Jacas, J.A., Peña, J.E., Duncan, R.E., Ulmer, B.J., 2007 . Thermal requirements of Fidiobia Dominica (Hymenoptera: Platygastridae) and Haeckeliania Sperata (Hymenoptera: Trichogrammatidae), two exotic egg parasitoids of Diaprepes abbreviatus (Coleoptera: Curculionidae). BioControl 53, 451-460.

Kalinkat ,G., Rall, B.C., 2015. Effects of climate change on the interactions between insect pests and their natural enemies. Climate Change and Insect Pests 74-91.

Khalil, A.A., Abolmaaty, S.M., Hassanein, M.K., El- mtewally, M.M., Moustafa, S. A., 2010. Degree days units and generation number of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) under climate change in Egypt. Egyptian Academic Journal of Biological Sciences 3(1), 11-19.

Oktaviani, N.M., 2021. Telenomus remus (Nixon) (Hymenoptera: Scelionidae) Biology and life table on Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) eggs. IOP Conference Series: Earth and Environmental Science 950, 012024.

Pomari, A.F., Bueno, A.D., De Freitas Bueno, R.C., De Oliveira Menezes Junior, A., 2012. Biological characteristics and thermal requirements of the biological control agent Telenomus remus (Hymenoptera: Platygastridae) reared on eggs of different species of the genus Spodoptera (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 105, 73-81.

Postali, P.J.R., Coelho, A., 2019. Applied Biological Control in Brazil: From laboratory assays to field application. Journal of Insect Science 19(2), 5.

Pratissoli, D., Zanuncio, J.C., Vianna, U.R., Andrade, J.S., Pinon, T.B., Andrade, G.S., 2005. Thermal requirements of Trichogramma pretiosum and T. Acacioi (Hym.: Trichogrammatidae), parasitoids of the Avocado Defoliator Nipteria Panacea (Lep.: Geometridae), in eggs of two alternative hosts. Brazilian Archives of Biology and Technology 8(4), 523-529.

Richmond, J.A., Thomas, H.A., Bhattacharyya, H., 1983. Predicting spring flight of Nantucket Pine Tip Moth (Lepidoptera: Olethreutidae) by heat unit ACCUMULATION1. Journal of Economic Entomology 76(2), 269-271. doi:10.1093/jee/76.2.269

Schwartz, A., Gerling, D., 1974. Adult biology of Telenomus remus [Hymenoptera: Scelionidae] under laboratory conditions. Entomophaga 19(4), 483-492.

Selvaraj, S., Ganeshamoorthi, P., Pandiaraj, T., 2013. Potential impacts of recent climate change on biological control agents in agro-ecosystem: A review. International Journal of Biodiversity and Conservation 5, 845-852.

Snyder, R.L., 1985. Hand calculating degree days. Agricultural and Forest Meteorology 35, 353-358.

Torres, J.B., Pratissoli, D., Zanuncio, J.C., 1997. Exigências Térmicas e potencial de Desenvolvimento Dos Parasitóides Telenomus Podisi Ashmead e Trissolcus Brochymenae (Ashmead) EM ovos do Percevejo Predador Podisus nigrispinus (Dallas). Anais Da Sociedade Entomológica Do Brasil 26(3), 445-453.

Van Welzen, C.R., Waage, J.K., 1987. Adaptive responses to local mate competition by the parasitoid, Telenomus remus. Behavioral Ecology and Sociobiology 21(6), 359-365.

Wengrat, A.P.G.S., Coelho, A., Parra, J.R.P., Takahashi, T.A., Foerster, L.A., Corrêa, A.S., Zucchi, R.A., 2021. Integrative taxonomy and phylogeography of Telenomus remus (Scelionidae), with the first record of natural parasitism of Spodoptera spp. in Brazil. Scientific Reports 11, 1.

Zalom, F., Goodell, P., Wilson, L., Barnett, W., Bentley, W., 1983. Degree-days: the calculation and use of heat unit in pest management. Division of Agricultural and Natural Resources, University of California, Davis, CA, USA. p 10.

Zalom, F., Wilson, T., 1982. Degree days in relation to an integrated pest management program. Division of Agricultural Sciences, University of California, Davis, CA, USA. p 2.



  • There are currently no refbacks.