Effects of Lead (Pb) Contamination on Growth, Antioxidants and Osmo-Protectants in Zea mays (L.): Plants Strategy to Combat Metal Toxicity
Abstract
Keywords
Full Text:
PDFReferences
Ahmad, F., A. Singh and A. Kamal. 2020. Osmoprotective role of sugar in mitigating abiotic stress in plants. Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives, pp.53-70.
Ahmad, P., C.A. Jaleel, M.A. Salem, G. Nabi and S. Sharma. 2010. Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3): 161-175.
Alam, P., T.A. Balawi, M. Ashraf and P. Ahmad. 2021. 24-Epibrassinolide (EBR) reduces oxidative stress damage induced by cadmium toxicity by restricting Cd uptake and modulating some key antioxidant enzymes in maize plants. Pakistan Journal of Botany, 53(1): 59-66.
Ali, B., T.M. Mwamba, R.A. Gill, C. Yang, S. Ali, M.K. Daud, et al. 2014. Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regulation, 74, 261-273.
Amari, T., T. Ghnaya and C. Abdelly. 2017. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99–110.
Anjum, S.A., U. Ashraf, I. Khan, M. Tanveer, M. Ali, I. Hussain and L. C. Wang. 2016. Chromium and aluminum phytotoxicity in maize: morpho‐physiological responses and metal uptake. CLEAN–Soil, Air, Water, 44(8): 1075-1084.
Ashfaque, F., A. Inam, S. Sahay and S. Iqbal. 2016. Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation-a promising technology. Journal of Agriculture and Ecology Research International, 6(2): 1-19.
Ashraf, M. and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216.
ATSDR. 2017. Agency for toxic substances and disease control. The priority list of hazardous substances 201. Retrieved from http://www.atsdr.cdc.gov/spl/. Accessed Nov 2018.
Atta, M.I., S.S. Zahra, M.K. Afzal, N. Abbas, M. H. Hassan, S. Sarwar, M. Husain and W. Ahmad. 2023a. Analysis of lead toxicity on characteristics of germination, embryonic growth, biochemical and oxidative stress in maize (Zea mays L.) genotypes. GU Journal of Phytosciences, 3(4): 240-246.
Atta, M.I., S.S. Zehra, H. Ali, B. Ali, S.N. Abbas, S. Aimen, S. Sarwar, I. Ahmad, M. Hussain, I. Al-Ashkar, D. Elango and A. El Sabagh. 2023b. Assessing the effect of heavy metals on maize (Zea mays L.) growth and soil characteristics: plants-implications for phytoremediation. Peer J, 11, e16067.
Ayala, A., M.F. Munoz and S. Arguelles. 2014. Lipid Peroxidation: Production, metabolism, and signaling mechanisms of melano-dialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 1, p.360438. http://dx.org/10.1155/2014/360438.
Borland A, S. Elliott and S. Patterson. 2006. Are the metabolic components of crassulacean acid metabolism up-regulated in responses to an increase in oxidative burden? Journal of Experimental Botany, 57, 319-328.
Charest, C. and C. Ton Phan. 1990. Cold acclimation of wheat (Triticum aestivum L.): Properties of enzymes involved in proline metabolism. Physiologia Plantarum, 80, 159-168.
Choudhury, S., P. Panda, L. Sahoo and S. K. Panda. 2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior, 8(4): e23681-6.
Chowardhara, B., P. Borgohain, B. Saha, J.P. Awasthi and S.K. Panda.2020. Differential oxidative stress responses in Brassica juncea (L.) Czern and Coss cultivars induced by cadmium at germination and early seedling stage. Acta Physiologiae Plantarum, 42, 105.
del Real, A.P., P.G. Gonzalo, A.G. Rodríguez, M.C. Lobo and A.P. Sanz. 2013. Effect of genotype, Cr (III) and Cr (VI) on plant growth and micronutrient status in Silene vulgaris (Moench). Spanish Journal of Agricultural Research, 3, 685-694.
Dhindsa, R.S. and W. Matowe. 1981. Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. Journal of Experimental Botany, 32(1): 79-91.
Dhir, B., S.A. Nasim, S. Samantary, S. Srivastava. 2012. Assessment of osmolyte accumulation in heavy metal exposed Salvinia natans. International Journal of Botany, 8, 153-158.
Fargasova, A. 2001. Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapsis alba (L.) seedlings and their accumulation in roots and shoots. International Journal of Plant Biology, 44, 471-473.
Fozia, A., Z.M. Anjum, M. Ashraf and K.Z. Mahmood. 2008. Effect of chromium on growth attributes in sunflower (Helianthus annuus L.) Journal of Environmental Sciences, 20(12):1475-1480.
Ghasemi, F., R. Heidari, R. Jameii and L. Purakbar. 2012. Responses of growth and antioxidative enzymes to various concentrations of nickel in Zea mays leaves and roots. Romanian Journal of Biology - Plant Biology, 58(1): 37-49.
Giannakoula, A., I. Therios and C. Chatzissavvidis. 2021. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants, 10, 155.
Hamilton, P.B. and D.D. Van-Slyke. 1943. Amino acid determination with ninhydrin. Journal of Biological Chemistry, 150, 231-233.
Hassan, T. U., A. Bano and I. Naz. 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation, 19, 522–529.
Heath, R.L. and L. Packer. 1968. Photorespiration in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125, 189-198.
Jasmin, P., A.S. Chamon, M.N. Mondol and S.M. Ullah. 2020. Effects of lead on growth and mineral nutrition of wheat (Triticum aestivum L.) as influenced by manure and lime. Journal of Biodiversity Conservation and Bioresource Management, 6(2): 69-76.
Joshi, R. 2018. Role of enzymes in seed germination. International journal of creative research thoughts, (2320–2882) 6, 1481–1485.
Kanwal, A., M. Farhan, F. Sharif, M.U. Hayyat, L. Shahzad and G.Z. Ghafoor. 2020. Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Scientific Reports, 10, 11361.
Karkonen., A and K. Kuchitsu. 2015. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry, 112, 22-32.
Kaya, C, N. A. Akram, M. Ashraf, M. N. Alyemeni, and P. Ahmad. 2020. Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up regulating the synthesis of nitric oxide and hydrogen sulfide. Journal of Biotechnology, 316, 35-45.
Khan, M., T.N. Ibrahim, Al. Azzawi, M. Imran, A. Hussain, B. G. Mun, A. Pande and B.W. Yun. 2021. Effects of lead (Pb) induced oxidative stress on morphological and physio-biochemical properties of rice. Biocell, 45(5): 1413-1423
Khan, M.N., S. Alamri, A.A. Al-Amri, Q.D. Alsubaie, B. Al-Munqedi, H.M. Ali, V.P. Singh and M.H. Siddiqui. 2021. Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity. Journal of Plant Growth Regulation, 1-13.
Kumar, B., K. Smita and L. C. Flores. 2017. Plant mediated detoxification of mercury and lead. Arabian Journal of Chemistry, 10, S2335–S2342.
Lowery, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.
Nas, F.S. and M. Ali. 2018. The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Ecology & Environmental Sciences, 3(4): 265-268.
Ozturk, M., E. Yucel, S. Gucel, S. Sakçali and A. Aksoy. 2008. Plants as biomonitors of trace elements pollution in soil; Academia: San Francisco, CA, USA.
Ozturk, M., M. Ashraf, A. Aksoy, M.S.A. Ahmad and K.R. Hakeem. 2015. Plants, pollutants and remediation; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9401771944
Pan, G., L. Zhao, J. Li, S. Huang, H. Tang, L. Chang, Z. Dai, A. Chen, D. Li, Z. Li. 2020. Physiological responses and tolerance of flax (Linum usitatissimum L.) to lead stress. Acta Physiologiae Plantarum, 42, 113.
Pierart, A., M. Shahid, N. Séjalon-Delmas and C. Dumat. 2015. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234.
Pourrut, B., S. Jean, J. Silvestre and E. Pinelli. 2011. Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutation Research, 726, 123–128.
Riyazuddin, R., N. Nisha, B. Ejaz, M.I.R. Khan, M. Kumar, P.W. Ramteke and R.A. Gupta. 2022. Comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules, 12, 43.
Salla, V., C. J. Hardaway and J. Sneddon. 2011. Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soils from Southwest Louisiana. Microchemical Journal, 97, 207–212.
Shahid, M., S. Khalid, G. Abbas, N. Shahid, M. Nadeem, M. Sabir, M. Aslam and C. Dumat. 2015. Heavy metal stress and crop productivity. Crop production and global environmental issues, pp.1-25.
Shao, Y., M. Guo, X. He, Q. Fan, Z. Wang, J. Jia and J. Guo. 2019. Constitutive H2O2 is involved in sorghum defense against aphids. Revista Brasileira de Botânica, 42(2): 271-281.
Shiyab, S. 2019. Morpho-physiological effects of chromium in sour orange (Citrus aurantium L.). Horticultural Science, 54, 829–834.
Singh, S., P. Parihar, R. singh, V.P. Singh, S.M. Parsad. 2016. Heavy metal tolerance in plants: Role of transcriptomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143.
Singh, S., P.K. Srivastava, D. Kumar, D.K. Tripathi, D.K. Chauhan and S. M. Prasad. 2015. Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatalysis and Agricultural Biotechnology, 4(3): 286-295.
Taiz, L., and E. Zeiger. 2010. "plant physiology 5th edition sinauer Associates. Publisher Sunderland. (2010)
Tangahu, B. V., S.R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar and M. Mukhlisin. 2011. A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 31.
Tiwari, S. and C. Lata. 2018. Heavy metal stress, Signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science, 9, 452.
Tyagi, S., K. Singh and S.K. Upadhyay. 2021. Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). Journal of Hazardous Materials, 403, 123585.
Vanacker, H., T.L.W. Carver, C.H. Foyer. 1998. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiology, 117,1103–1114.
Velikova, V., I. Yordanov and A. Edriva. 2000. Oxidative stress and antioxidant systems in acid rain treated bean plants: Protective role of exogenous polyamines. Plant Sciences, 151, 59-66.
Wahid, A., M. Arshad and M. Farooq. 2010. Cadmium phytotoxicity: responses, mechanisms and mitigation strategies: a review. Organic farming, pest control and remediation of soil pollutants, pp.371-403.
Xie, L., P. Hao, Y. Cheng, I.M. Ahmad and F. Cao. 2018. Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicology and Environmental Safety, 162, 71-76
Xiong, T., T. Leveque, M. Shahid, Y. Foucault, S. Mombo and C. Dumat. 2014. Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. Journal of Environmental Quality, 43, 1593–1600.
Yoon, J., X. Cao, Q. Zhou and L.Q. Ma. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368, 456-464.
Yoshida, S., D. A. Forna, I. Cock and K. A. Gomez. 1976. Laboratory manual for Physiological Studies of Rice (3rd Ed.), International Rice Research Institute, Los Banos, Philippines.
DOI: https://doi.org/10.33687/planthealth.03.02.5505
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.