Ameliorative Effect of Indole Acetic Acid on Zea mays Grown Under the Simultaneous Stress of Cr (VI) and Macrophomina phaseolina

Sundus Akhtar, Ayesha Shafqat, Ayesha Yaqoob, Sajida Sharif, Asia Nisar, Ahmed Waqas, Sonia Aslam

Abstract


The present study aimed to investigate the ameliorative effect of Indole Acetic Acid (IAA) on Zea mays plants grown under simultaneous stress of hexavalent chromium Cr (VI) and Macrophomina phaseolina. The plants were treated with 1% IAA and subjected to Cr (VI) (2000 and 4000 ppm) and M.  phaseolina stress for 30 days. The results revealed that the application of IAA significantly improved the growth parameters and photosynthetic pigments, however, the antioxidant enzyme activities increased in stressed plants compared to the control. Furthermore, IAA treatment reduced the stress of Cr (VI) in the roots and shoots of the plants. These findings suggest that IAA protects Z. mays plants grown under the simultaneous stress of Cr (VI) and M. phaseolina by enhancing their physiological activities, thereby reducing the toxic effects of Cr (VI) and M. phaseolina.


Keywords


Zea mays;Indole acetic acid;Macrophomina phaseolina;Hexavalent chromium

Full Text:

PDF

References


Anjum, S., A. Ashraf, U. Imran, K. Tanveer, M. Shahid, M. Shakoor and W. Longchang. 2017. Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere, 27(2), 262-273.

Atta, M.I., S.S. Zehra, H. Ali, B. Ali, S.N. Abbas, S. Aimen, S. Sarwar, I. Ahmad, and M.I. Hussain Al-Ashkar, D.A. Elango El Sabagh. 2023. Assessing the effect of heavy metals on maize (Zea mays L.) growth and soil characteristics: plants-implications for phytoremediation. Peer Journal, 11, e16067 http://doi.org/10.7717/peerj.16067.

Aziz, H., K.H. Mustafa, F.S. Omer, K.M. Hama, S. Hamarawf and R.F. Rahman. 2023. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Advance, 13(26), 17595-17610.

Correa, O.S., M.S. Montecchia, M.F. Berti, M.C.F. Ferrari, N.L. Pucheu, N.L. Kerber and A.F. Garcia. 2009. Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Applied Soil Ecology, 41, 185-194.

Degani, O., S. Dor, D. Abraham and R. Cohen. 2020. Interactions between Magnaporthiopsis maydis and Macrophomina phaseolina, the Causes of Wilt Diseases in Maize and Cotton. Microorganisms, 8(2), 249.

Duca, D., J. Lorv, C.L. Patten, D. Rose and B.R. Glick. 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek, 106(1), 85-125.

Kumar, K.B. and P.A. Khan. 1982. Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Indian Journal of Experimental Biology, 20, 412-416.

Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1 (1987).

Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

Mansoor, S., A. Ali, N. Kour, J. Bornhorst, K. AlHarbi Rinklebe, D. Abd El Moneim, P. Ahmad and Y.S. Chung. 2023. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants (Basel), 12(16), 3003. doi: 10.3390/plants12163003.

Marquez, N., M.L. Giachero, S. Declerck and D.A. Ducasse. 2021. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 12, 634397.

Mayer, A.M. E. Harel and R.B. Shaul. 1965. Assay of catechol oxidase, a critical comparison of methods. Phytochemistry, 5, 783–789. https://doi.org/10.1016/S0031-9422(00)83660-2.

Mir, A.R., H. Siddiqui, P. Alam and S. Hayat. 2020. Foliar spray of Auxin/IAA modulates photosynthesis, elemental composition, ROS localization and antioxidant machinery to promote growth of Brassica Juncea. Physiology and Molecular Biology of Plants, 26(12):2503-2520. doi: 10.1007/s12298-020-00914-y.

Münzel, T., O. Hahad, A. Daiber and P.J. Landrigan. 2023. Soil and water pollution and human health: what should cardiologists worry about? Cardiovascular Research, 119(2), 440-449. doi: 10.1093/cvr/cvac082.

Murdia, L., R. Wadhwani, N. Wadhawan, P. Bajpai and S. Shekhawat. 2016. Maize utilization in India: An overview. American Journal of Food and Nutrition, 4(6), 169-176.

Nabeel, M., H. Javed and T. Mukhtar. 2018. Occurrence of Chilo partellus on maize in major maize growing areas of Punjab, Pakistan. Pakistan Journal of Zoology, 50(1), https://doi.org/10.33804/pp.004.02.3205.

Rizvi, A. and M. S. Khan (2018). Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicology and Environmental safety, 157, 9-20.

Saud, S., D. Wang, S. Fahad, T. Javed, M. Jaremko, N. R. Abdelsalam and R.Y. Ghareeb. 2022. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Frontier in Plant Science, https://doi.org/10.3389/fpls.2022.994785.

Shang, Q, D. Jiang, J. Xie, J. Cheng and X. Xiao. 2024. The schizotrophic lifestyle of Sclerotinia sclerotiorum. Molecular plant pathology, e13423.

Sharma, A., D. Kapoor, J. Wang, B. Shahzad, V. Kumar, A.S. Bali, S. Jasrotia, B. Zheng, H. Yuan and D. Yan. 2020. Chromium Bioaccumulation and Its Impacts on Plants: An Overview. Plants (Basel), 9(1), 100.

Srivastava, A.K. and S. Srivastava. 2020. Plant growth regulators: Roles and perspectives in stress tolerance. In Plant Signaling Molecules. Academic Press. (pp. 105-130).

Wiszniewska, A. 2021. Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure. Plants (Basel), 10(4):623. doi: 10.3390/plants10040623.

Yue, K., L. Lingling, J. Xie A. Jeffrey, Coulter, Z. Luod. 2021. Synthesis and regulation of auxin and abscisic acid in maize, 16(7), 1891756.doi: 10.1080/15592324.2021.1891756.




DOI: https://doi.org/10.33687/planthealth.03.02.5100

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.