A R T I C L E I N F O

Article History
Received: December 03, 2021
Revised: March 12, 2022
Accepted: March 29, 2022

Keywords
Host Resistance
Bacterial Canker
Pseudomonas syringae
Stone Fruits

ABSTRACT

Bacterial canker disease caused by Pseudomonas syringae pv. syringae (Pss) has expanded rapidly in Pakistan, notably on stone fruits. The present research aimed to determine peach, plum, and apricot cultivars’ resistance to Pss bacterial canker. During the 2014–2015 growing season, diseased samples exhibiting symptoms of bacterial canker were collected from peach, plum, and apricot trees in Punjab and KPK provinces, and 48 P. syringae isolates were recovered. In a pathogenicity test, three Pss isolates (PS3, PS9, and PS17) were found to be highly virulent on peach, plum, and apricot, and their resistance to Pss was evaluated. Leaves and shoots of five peach varieties; Early grand, Florida king, 4 ½, 5 ½, 6 ½, four plum varieties; Red beauty, Fazal-e-Manani, Stanley, Producer, and two apricot varieties; Chinese apricot and golden amber, were foliar sprayed with a mixed culture of Pss at a concentration of 10^8 cfu ml^-1. Sprayed cultivars were covered with plastic bags for three days to retain moisture and kept in a glass house, where they were closely monitored for the appearance of symptoms. 5 ½ peach, Fazal-e-Manani plum, and Chinese apricot were found resistant to Pss, 6 ½ peach, Stanley plum were susceptible while Golden amber apricot was found moderately susceptible to Pss. This is the first report of apricot, peach, and plum host resistance to Pss in Pakistan.

INTRODUCTION

Bacterial canker of stone fruits is caused by Pseudomonas syringae pv. syringae, a widespread organism that generally causes disease on stressed trees. All stone fruit can be affected by this disease, but cherries, peaches, and apricots are the most susceptible (Ong and Rhodes, 2022). Bacterial canker of stone fruits has emerged as a serious threat in many parts of the world (Mohammadi et al., 2001; Ali et al., 2021). It causes localized sunken lesions which are known as cankers or the death of an entire tree. Symptoms of bacterial canker are developed on plant parts like buds, fruits, twigs, and branches. Most noticeable symptoms include; sunken lesions known as cankers that secrete or ooze out the gummy secretions during the late summer and spring (Hetherington, 2005). This disease infects all the Prunus species including peach (Prunus persica), Plum (Prunus domestica), apricot (Prunus armeniaca), and cherry (Prunus avium). Two distinct pathovars of bacterial canker of stone fruits; P. syringae pv. syringae and P. syringae pv morsprunorum are known and associated with different host range (Ivanova, 2007; Ahmed et al., 2018; Ahmed et al., 2016). Pseudomonas spp. are difficult to control because to a lack of proper control techniques, plant resistance, and
endophytic behaviour of the pathogen during various disease phases (Kennelly et al., 2007; Bibi et al., 2017). The control of bacterial canker of stone fruits is unattainable, especially under optimal environmental conditions for infection and disease development (Giovanardi et al., 2016). The use of stone fruit cultivars resistant to Pss is economically and technically the most practical method for effective management of bacterial canker (Bassi, 1997). Use of resistant cultivars against Pss is technically and economically most effective procedure for the management of many diseases of stone fruits (Bassi, 1997; Donmez et al., 2010). The objective of this study was to evaluate stone fruit cultivars commonly grown in Pakistan for their response to Pss.

MATERIALS AND METHODS

Germplasm Collection

Table 1. Representation of surveyed locations of Punjab and Khyber Pakhtoon Khwa, Pakistan during 2014-15 and 2015-16.

<table>
<thead>
<tr>
<th>Province</th>
<th>District/Area</th>
<th>Sub Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punjab</td>
<td>Murree</td>
<td>Gujranwala, National Agricultural Research Center, Islamabad</td>
</tr>
<tr>
<td></td>
<td>Barani</td>
<td>Agricultural Research Institute, Chakwal</td>
</tr>
<tr>
<td></td>
<td>Peshawar</td>
<td>Peshawar</td>
</tr>
<tr>
<td>Khyber Pakhtoon Khwa</td>
<td>Haripur</td>
<td>Jati Pind, Nara Amaz, Tofkian, Pind Hashim Khan, Khan Pur</td>
</tr>
<tr>
<td></td>
<td>Abbottabad</td>
<td>Singi Mera, Baghotar, Balakot, Malikot, Nambal, Sajikot, Nara</td>
</tr>
<tr>
<td></td>
<td>Mansehra</td>
<td>Baffa, Battal, Hilkot, Jallo, Shinkiari, Dhalod, Bandi, Malik Pura</td>
</tr>
<tr>
<td></td>
<td>Swat</td>
<td>Sher Garh, Sakha Kot, Thanra, Barikot, Mingora, Takht, Sher Palam, Bagh Deri, Matta</td>
</tr>
</tbody>
</table>

Hypersensitive Response and Pathogenicity Test

Hypersensitive reaction was performed to check the virulence of recovered bacterial isolates on tobacco, peach, plum and apricot seedlings (Johansson et al., 2015; Doolotkeldieva and Bobusheva, 2020). Suspension was prepared using 24-48 hours grown bacterial cultures in sterilized distilled water to make a final concentration of 10^8 cfu ml^{-1}. Inoculation of healthy leaves of pre-maintained peach, plum and apricot nursery was done followed by the covering of leaves with polythene bags in order to maintain 25±2 °C temperature and 65-70 % relative humidity. The response was then recorded after 3-7 days with an interval of 2 days post inoculation (DPI).

Host Resistance Response against Bacterial Canker Pathovars

Preparation of Inoculum

The inoculum of *P. syringae* was prepared in nutrient broth media incubated for two days at 28 °C in a shaking incubator at 200 rpm. Fresh bacterial colonies from nutrient broth were collected by centrifugation at 10000 rpm for 10-15 minutes. Final concentration of bacterial population 10^9 cfu/ml was made at OD6000 using spectrophotometer in sterilized distilled water as solvent.

Inoculation and Host Response

Bacterial inoculation was done onto the germplasm of 10-12 week old seedlings of peach, plum, and apricot grown in pots on sterile soil under controlled conditions (Temperature (d/n) = 28/24 °C) by applying 30 ml of bacterial suspension (10^6 cfu/ml) as foliar application. Plants inoculated with distilled water were used as control (Lelliott and Stead, 1987). After inoculation, plants were covered with plastic bags to maintain 25±2 °C temperature and 65-70 % relative humidity in controlled conditions, and plants were then examined for disease development. After 2 to 3 weeks, average disease severity rating (ADSR) was assessed by using rating scale; 1 = symptomless; 2 = a
RESULTS AND DISCUSSION
Recovered isolations were identified comparing the findings of Crosse (1959) who revealed *P. syringae* pv. *syringae* and *P. syringae* pv. *morsprunorum* can be readily isolated from leaf surfaces of peach and apricot during the growing season. A total of 48 bacterial isolates were recovered from the presumed infected tissues and leaf samples and kept in 20% glycerol for further investigations.

Hypersensitive Response and Pathogenicity Test
A total of 48 isolates were examined for hypersensitive reaction (HR) on tobacco which revealed 13 isolates showed negative HR response, while the remaining 35 isolates showed positive HR response. Pathogenicity test revealed only 3 isolates were highly virulent on apricot, peach and plum plants in the initial 10 days (Table 2). These findings are in line with the findings of Kotan and Şahin (2002), where they identified *P. syringae* pv. *syringae* from bacterial canker symptoms on apricot trees in Turkey and confirmed its pathogenicity. Kennelly et al. (2007) also reported the strains of *P. syringae* pv. *syringae* are highly susceptible to stone fruits except to sour cherry.

Host resistance response against *P. syringae* isolates
All the test cultivars of cultivars of peach, plum and apricot showed a susceptible to resistant response following disease severity scale against *P. syringae* pv. *syringae* (Table 3).

Change in leave color, mostly in susceptible cultivars including 6 ½ in peach, Stanley in plum and Golden Amber in apricot was observed 5 days after inoculation followed by characteristic symptoms of *P. syringae* appeared on leaves after 10 days. Water-soaked spots of 1 to 3 mm of diameter appeared as first which later on, turned to brownish, dryer and brittle, and eventually fell out giving a shot-hole appearance confirming the symptoms of bacterial canker disease on stone fruits (Agrios, 2005; Doolotkeldieva and Bobusheva, 2020).

Average disease severity rating (ADSR)
Average disease severity rating (ADSR) was determined between 1.87 (5 ½) and 3.87 (6 ½) in peach, 1.73 (Fazal-e-manani) and 3.93 (Producer), 1.10 (Chinese apricot) and 2.63 (Golden amber) (Table 3). The lowest ADSR was found in 5 ½ of peach, Fazal-e-Manani of plum and Chinese apricot of apricot. Response on these cultivars were statistically different from other cultivars. In contrast, the highest ADSR was found in 6 ½ of peach, Stanley of plum. These cultivars were statistically higher than other cultivars and were considered as susceptible, because they showed highest susceptibility to *P. syringae* infection. The cultivar 5 ½ of peach, Fazal-e-manani of plum and Chinese apricot of apricot showed small necrotic lesions and were considered as resistant cultivars to *P. syringae*. On the basis of ADSR, the remaining cultivars of peach, plum and apricot were considered as moderately susceptible. Considering the appearance of symptoms shown by the most virulent strains of *P. syringae*, 5 ½ of peach, Fazal-e-manani of plum and Chinese apricot of apricot were grouped as resistant cultivars and had an ADSR of 1.87, 1.73 and 1.10, respectively (Table 3). The response was significantly lower than ADSRs of moderately susceptible cultivars, Florida king and Early grand of Peach, Red beauty and Stanley of plum, and susceptible cultivars 6 ½ and 4 ½ of peach and Producer of plum, while Golden amber of apricot was found moderately susceptible. This is the first study that exhibits host resistance to peach, plum and apricot cultivars to bacterial canker disease in Pakistan.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Tobacco</th>
<th>Peach</th>
<th>Plum</th>
<th>Apricot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ps1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ps2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ps3</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Ps4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ps5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ps6</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

Table 2. Hypersensitive reaction and virulence of *P. syringae* isolates on tobacco, peach, plum and apricot plants.
| | Ps7 | Ps8 | Ps9 | Ps10 | Ps11 | Ps12 | Ps13 | Ps14 | Ps15 | Ps16 | Ps17 | Ps18 | Ps19 | Ps20 | Ps21 | Ps22 | Ps23 | Ps24 | Ps25 | Ps26 | Ps27 | Ps28 | Ps29 | Ps30 | Ps31 | Ps32 | Ps33 | Ps34 | Ps35 | Ps36 | Ps37 | Ps38 | Ps39 | Ps40 | Ps41 | Ps42 | Ps43 | Ps44 | Ps45 | Ps46 | Ps47 | Ps48 |
|---|-----|-----|-----|------|
| | + | + | ++ | + | - | + | + | + | - | + |

Isolates marked ‘+++’ are highly virulent; isolates marked ‘++’ are moderately virulent; isolates marked ‘+’ are weakly virulent.
It is evident from the worldwide reports that *P. syringae* is undoubtedly critical bacterial pathogen and is still increasing its host range, infecting more crops, fruits and vegetable particularly posing serious threats to production of stone fruits. Leaf spot can be found on cultivars of stone fruits susceptible to bacterial canker infection. These leaf spots are surrounded by chlorotic rings during early stages, and then the spots expand in diameter and finally falling out of lea tissues resulting in shot-hole symptom (Kennelly *et al.*, 2007; Doolotkeldieva and Bobusheva, 2020). *P. syringae* isolates with virulence properties could produce compounds such as siderophore pyoverdine and phytotoxin, similar to syringomycin, which cause dark dry decay (Taguchi *et al.*, 2010; Jones *et al.*, 2007). In this aspect, cultivars which showed severe disease symptoms in leaves can produce critical symptoms on blossoms, shoots and trunks as well. Similarly, in cultivars showing lower leaf spot symptoms, pathogenic potential could be lower in other parts of the plant. Except reports of Kennelly *et al.* (2007) who suggested that mode of resistance to *P. syringae pv. syringae*, no reports are found on the area of investigations therefore, it is important that for further studies be conducted to find out the mechanism of resistance to *P. syringae pv. syringae*.

REFERENCES

Jones, A. M., S. E. Lindow and M. C. Wildermuth. 2007. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. Journal of Bacteriology, 189: 6773-86.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

AUTHORS CONTRIBUTIONS
All the authors contributed equally to this work.

Publisher's note: EScience Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.