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Plants have the ability to show responses against various environmental stresses. 
It is one of the necessities to understand stress response mechanisms to improve 
crops productivity and quality, under the stressed condition. 
The AP2/ERF transcription factors are one of the putative candidates that are 
involved in the regulation of biotic and abiotic stress. Most of the research has 
been conducted on functional analysis of AP2/ERF genes in many plants; 
however, a comprehensive review is required to show a broad picture of 
functionally characterized AP2/ERF in different plants. In this study, a 
comprehensive review is carried on genome-wide studies of AP2/ERF gene 
family and their evolutionary divergence in plant species including mustard 
(Arabidopsis, brassica), cereal (rice, wheat, maize, sorghum), and fiber (upland 
cotton and island cotton). Review exhibited that AP2/ERF superfamily is 
classified into four sub-families e.g. AP2, DREB, ERF, RAV and solicit, in which the 
ERF was the largest sub-family of AP2/ERF superfamily. Each subfamily was 
further divided into multiple groups and sub-groups. Furthermore, each plant 
species showed different number of paralogs showing correspondence to the 
plant genome size .e.g. higher genome possess higher gene copy number. The 
change in copy number may be due to either tandem gene duplication or whole 
genome duplication during evolutionary adaptation that developed special 
feature in plant species under environmental stresses. Moreover, current study 
also surveyed on the expression of AP/ERF genes with the conclusion that 
expression of AP2/ERF produced tolerance against biotic and abiotic stresses. 
However further studies are required to improve crops resistance by studying 
the same variables and gene families in different plants.  
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INTRODUCTION 

 

Environmental stress like drought, high salinity, extreme 

temperature, lack of oxygen have an adverse impact on 

plant growth and this, in turn, leads to the loss of crop 

yield and the crop quality (Awasthi et al., 2014; Qaisrani 

et al., 2022). According to Peters et al. (2012), due to the 

increase in the level of carbon dioxide all over the world, 

the climatic conditions are changing rapidly with the 

considerable increase in the temperature leading to the 

poor the quality of agricultural land. These type of 

stresses alter the morphology and physiology of the 

plant’s cell, resulting changes in function, such as cell 

division and cell growth as well as metabolism alteration 

(Agarwal et al., 2006; Yamasaki et al., 2013).It has 

been hypothesized that for the survival of the plant, it 

gets a signal from surrounding and produce a response 

to regulate and fix its mechanism. Most of plant 

hormones, transcriptional factors or regulators, 

signalling molecules and other secondary messenger 

molecules in stress condition gets activated and allows 

the plants to respond and act so to allow them to 

withstand such harsh conditions (Cvikrová et al., 2013; 

Gilroy et al., 2014). Activation of such a signal cascade 

acts to induce activation of certain stress responsive 

plant genes which produces enzyme and other different 

kind of proteins that help the plant to regulate its 

metabolic activities that are involved in helping the plant 

in response to withstand stress stimuli (Casaretto et al., 

2016). Commonly, hormones like abscisic acid act as 

important growth stimulator supporting the plant 

against high salt and drought stress (Danquah et al., 

2014). The main focus of this review is about the action 

of certain stress-responsive transcription factors that 

help in activating the genes that aid in plant survival. 

Therefore, in such responsive stress conditions, it is 

important to examine the responsive genes and its 

expression to improve crop yield under stress condition 

(Trewavas, 2005). In Signaling transcription factor plays 

important role in activation and inactivation of defence 

gene expression as well as regulation and interaction of 

these genes with other gene families. 

 

Transcription Factors 

 

In molecular biology transcription factors (TFs) are a 

protein that controls gene expression at DNA to mRNA 

level. This protein bind to DNA sequences at upstream 

and downstream of the gene to regulate any gene 

transcription. This also acts as co-activator or co-

suppressor that controls the expression of a gene at right 

time, in right cell and the right amount. Group of 

Transcription factors coordinate to direct a cell for cell 

division, cell growth and cell death (Mizoi et al., 2012; 

Sun et al., 2016). The number of transcription factor 

depends on genome size, for example, there are 2600 

TFs in human genome and plants have multiple times of 

human TFs (Asensi-Fabado et al., 2017). The selective 

activation and inactivation of genes enable us to 

understand the cellular behaviour towards internal and 

external environment (Schmid et al., 2005). Different 

transcription factor families regulate different processes 

like light and stress signalling, seed maturation, flower 

development, development of the embryo, root cells 

maturation and pathogen defence etc (Mizoi et al., 2012; 

Sun et al., 2016; Hussain et al., 2016b; Zandalinas et al., 

2017). 

Transcription factors (TFs) are directly involved in gene 

expression by interaction with DNA-binding element 

and cis-element in the promoter region (Mizoi et al., 

2012; Sun et al., 2016). Particular environmental signals 

activate specific responsive mechanisms in plants. These 

processes are involved in the regulation of gene through 

transcription factors (Mizoi et al., 2012; Ohme-Takagi 

and Shinshi, 1995). 

 

Transcription Factors Families 

 

According to transcription factor classification, 129-288 

TFs classes were identified in 83 species. These classes 

were categorized into 58 families such as AP2, ERF, 

WORKY, MYB, RAV, MICK etc. Plants species has more 

transcription factor them mammals. For example,  

2296 TFs found in Arabidopsis thaliana and 1891 TFs in 

Oryza sativa, are classified into 58 and 56 transcription 

families respectively (Jin et al., 2014). Several other 

families of transcription factors like bZIP, HSF, C2H2 and 

NAC have been identified that have an important role in 

growth and stress response (Jin et al., 2014; Li et al., 

2008). As the expression profiles of Arabidopsis under 

stress identified 7000 genes upregulate and 

downregulate under specific stress like cold, drought 

and salinity condition (Sun et al., 2016; Seki et al., 2002) 

(Figure 1). So, transcription factor has a crucial role 

under biotic and abiotic stress to maintain plant growth 

and development and each transcription family response 
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to a specific stress. 

 

AP2/ERF Transcription Factors and its Classification 

 

In the past decade, the AP2/ERF family has become 

more attention gene family. A hypothesis states 

AP2/ERF family originated in result of horizontal 

transfer from bacteria/viruses to plants (Magnani et al., 

2004; Shigyo et al., 2006). Many AP2/ERF genes were 

identified and characterized in angiosperms (both 

monocotyledons and dicotyledons), gymnosperms and 

microorganisms (bacteria, ciliates, and viruses) 

(Shigyo et al., 2006; Xu et al., 2008; Hussain et al., 

2016b). An important role of AP2/ERF gene family has 

been reported in the regulation of transcriptional 

signaling linked with stress response. A single AP2/ERF 

gene can control various stress factors and in the 

regulation of different processes, there developed 

proteins contribute as positive and negative regulators 

(Chen et al., 2012). The regulatory involvement of 

AP2/ERF family has been studied in the biotic and 

abiotic stresses like UV radiation, salicylic acid, H2O2 

and in plant defense (Rahaie et al., 2013). Moreover, a 

number of studies had identified the involvement of 

these factors in other morpho-physiological activities 

like embryogenesis, development of seed coat and 

trichomes, regulation of biosynthetic pathways and 

hormonal signaling. However, the exact mechanism in 

response to stress is not yet fully understood. But in 

these days researchers have worked for the functional 

analysis of the AP2/ERF transcription factor in the 

response against stresses (Ülker and Somssich, 2004; 

Rushton et al., 2010).  The AP2/ERF transcription 

factor is involved in diverse regulatory function of 

plant development, growth and biotic and abiotic stress 

responses such as reproductive and vegetative 

development cell division, cell propagation, plant 

hormone responses, high salinity, low temperature, 

embryogenesis (Jofuku et al., 1994; Guillaumot et al., 

2008; Jin et al., 2014; Licausi et al., 2010). In view of 

these important function of AP2/ERF transcription 

family, the identification and characterization of 

AP2/ERF family became the main subject of transgenic 

plant researchers. 

 

 
Figure 1. Classification of Transcription factors drawn through Edraw Max 8.4. Coloured classification is the current subject 

of this paper. Cylindrical shapes its number and colour are showing protein domain present in respective families. 
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The first step of AP2/ERF TFs understanding was its 

classification i.e. AP2 (APETALA2) with 2 AP2/ERF 

domain in protein sequence, ERF (Ethylene responsive 

Factor) with one AP2/ERF domain, RAV (related to 

ABI3/VP1) with two different domains; AP2/ERF 

domain and B3 binding domain, DREB (Dehydration 

Responsive Element Binding protein), and other 

related binding domain, (Table 1; Figure 1), (Nakano et 

al., 2006; Sakuma et al., 2002). The AP2/ERF TFs have 

DNA-binding domain, consist of about 60 to 70 amino 

acid, that directly interacts with the dehydration-

responsive element (DREB), c-repeat element (CRT) 

and cis-acting element (CE) at the downstream of the 

target gene of a promoter. Thus, stress-responsive 

genes, having DREB, stress-responsive elements and 

CRT elements in their promoters shows strong 

expression under biotic and abiotic stress that lead 

plants protection in adverse condition. 

 

Table 1. Genome-wide survey of AP2/ERF in different plant species. 

Plants 
Total 

AP2/ERF 

Classification 
Reference 

AP2 ERF DREB RAV Soloist 

Foxtail Millet 171 28 90 48 5 - (Lata et al., 2014) 

Chines cabbage 291 49 139 109 14 1 (Song et al., 2013) 

Peach 131 21 104 - 5 1 (Zhang et al., 2012) 

Sorghum 126 16 105 - 4 1 (Yan et al., 2013) 

Maize 184 22 107 51 3 1 
(Du et al., 2014; Hussain et 

al., 2016b) 

Moso Bamboo 116 28 80 
 

7 1 (Wu et al., 2015) 

Carrot 267 38 143 71 12 3 (Yao et al., 2015) 

Arabidopsis 147 18 65 57 6 1 (Sakuma et al., 2002) 

Grapevine 149 20 86 36 6 1 (Licausi et al., 2010) 

Rice 164 26 79 52 7 0 (Wu et al., 2015) 

Banana 265 67 119 81 16 3 (Lakhwani et al., 2016) 

Banana wild 318 71 144 99 22 4 (Lakhwani et al., 2016) 

 

Regulatory Mechanism of AP2/ERF Transcription Factor 

 

ERFs and DREBs are two major subfamilies of the 

AP2/ERF family and play important roles in the 

regulation of abiotic and biotic stress responses (Mizoi 

et al., 2012; Sun et al., 2016). Generally, DREB 

transcription factors activate diverse dehydration and 

cold-regulated (RD/COR) genes by interacting with DRE 

and CRT elements (A/GCCGAC) present in the 

promoters of RD/COR genes that are responsive to both 

low-temperature and water deficiency, such as COR15A,-

RD29A/COR78, and COR6.6 (Mizoi et al., 2012; Liu et al., 

1998; Lucas et al., 2011; Sharoni et al., 2011; Stockinger 

et al., 1997). Recently it is studied that DREB bind to 

DRE and GCC-cis element and their binding activity is 

higher to DRE then GCC-box (Mizoi et al., 2012; Sun et 

al., 2016). For binding activities, Lys9 plays a key role in 

GCC box-binding activity and Val14th and Glu19 are 

essential in the AP2 domain of DREB (Cao et al., 2001). 

V1l14 when replaced with the other like Alanine then 

show no binding activities while Leucine at Leu19 shows 

strong binding activities (Cao et al., 2001; Sakuma et al., 

2002; Yao et al., 2015). 

ERF transcription factors directly regulate pathogenesis-

related (PR) gene expression by interaction with DNA-

binding factor at GCC-box (GCCGCC) (Büttner and Singh, 

1997; Sakuma et al., 2002; Zarei et al., 2011a). Although 

there is large divergent among sequences the two 

important residues, 14th Val/Ala and 19th Glu conserved 

in AP2/ERF domain are important to recognize cis-

Element. It was reported that the changes of Phe62 to 

Serine and  Gly156 to Arginine enhance the GCC-box 

binding activity of Brassica napus ERF-B3-hy15 protein 

(De Boer et al., 2011). 

The Tobacco ERF factor-ORC1, required for both GCC-

motif (TGCGCCC) and G-box (GCACGTTG) elements for 

maximum transactivation in the promoters of tobacco 

nicotine genes (De Boer et al., 2011). So it is possible that 

the different AP2/ERFs are involved in the regulation of 

downstream target genes. It is reported that AP2 
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subfamily binds to the element GCAC(A/G)N(A/T)-

TCCC(A/G)ANG(C/T) (Gong et al., 2008; Nole-Wilson and 

Krizek, 2000). This DNA sequence is quite different from 

the consensus sequence CCGA/CC bound by ERF and 

DREB subfamilies and not consist of two similar-half sites 

(Figure 2) (Krizek, 2003). 

 

 
Figure 2. Biotic and Abiotic stress regulatory pathway through AP2/ERF genes, drawn through Edraw Max 8.4. 

 

Genome-wide studies of AP2/ERF TF in important crops 

 

The genome-wide analysis is to study the gene 

epidemiology, the genetic association among the 

different groups of genes. These studies compare the 

DNA of different participants. In contrast to the analysis 

methods of one or few genes, the genome-wide analysis 

study analyzes whole genome (Pearson and Manolio, 

2008). Genome-wide analysis studies are a very 

important advancement in investigating the variations 

among the genes and genome of different species. 

Different approaches have been used in Genome-wide 

studies to investigate the genome of species. In different 

plant species, genome-wide analysis has been used to 

identify different groups of genes, variations among 

different genes and among different species. 

Classification on the basis of genetic differences and 

homology among genes has also been done by using 

genome-wide analysis. Genome distribution and protein 

domains analysis is also be practised. The evolutionary 

study of genes through phylogeny analysis to identify 

the different group’s evolution and parental gene 

relationship had also been studied (Table 1).  The 

comparative genome-wide studies showed that 

transcription regulatory genes are abundantly present in 

plant and animal genomes. This study also revealed that 

the diversity and evolution of eukaryotes seem to be 

related to the expansion of lineage specific transcription 

regulator families (Table 1) (Agarwal et al., 2011). 

 

Arabidopsis (Arabidopsis thaliana) 

 

The  first genome-wide study of AP2/ERF family was 

carried in Arabidopsis thaliana (Sakuma et al., 2002) and 

classified into  ERF, AP2, RAV and soloist. Later, Nakano 

et al. (2006) carried again genome-wide study and 

identified 147 AP2/ERF characterizing into  AP2, ERF, 

DREB, RAV and soloist. Arabidopsis thaliana has a 
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relatively small genome of approximately 135 megabase 

pairs (Mbp) (Initiative, 2000). It was long thought to 

have the smallest genome of all flowering plants, 

showing a genome size of approximately 61 Mb 

(Fleischmann et al., 2014). So, the number of genes in 

Arabidopsis lesser as compared to other large genomes 

plant species (Shigyo et al., 2006; Xu et al., 2008; Hussain 

et al., 2016b). Based on the identification and 

characterization of AP2/ERF superfamily in Arabidopsis, 

many research have been done to identify their role in 

plants. For instance,  Rashotte, 2006, determined that 

the Ap2 transcription factor in generating cytokinin 

response, Zhu et al. (2010) identified the involvement of 

AP2/ERF in BA, salt and osmotic stress responses, Zarei 

et al. (2011b) showed the AtAP2/ERF GCC boxes in 

jamonate/ethylene medieated activation. Abogadallah et 

al. (2011) over express AP2/ERF gene in Arabidopsis 

showed improvement in drought and salt tolerance, 

Huang et al. (2015) review also discussed detail ERF 

factor responses in the immunity of Arabidopsis. Dubois 

et al. (2015) identified the role of ERF6 and ERF11 in the 

antagonistic relation with the mannitol-induced growth 

inhibition in Arabidopsis. Park et al. (2016) suggested 

the positive regulation of cuticular wax biosynthesis in 

Arabidopsis by AP2/ ERF transcription factor. The 

overexpression of Camellia sinesis DREB in increased 

salt and drought tolerance in transgenic Arabidopsis 

(Wang et al., 2017), similarly, over expression of 

NnDREB1, NnDREB2, VrDREB2A, ScDREB8, AhERF  in 

transgenic Arabidopsis improved drought and salt 

tolerance (Cheng et al., 2015; Massange-Sánchez et al., 

2016; Chen et al., 2016; Cheng et al., 2017; Liang et al., 

2017). Sun et al. (2018) identified positive regulation of 

AP2/ERF in osmotic modulation and disease resistance 

in Arabidopsis, Li et al expressed sweet potato AP2/ERF 

in Arabidopsis, the transgenic Arabidopsis showed 

tolerance  against salt and drought, the Giuntoli and 

Perata (2018) review summarized crucial role of ERF 

transcription factor in the regulation of physiological 

role in Arabidopsis.  Huang et al. (2018b) determined 

the negative regulation of ERF19 when associated with 

NINJA in Arabidopsis. The heterologous over expression 

of Lithospermum erythrorhizon (LeERF-1) increased 

drought and pathogen resistance in Arabidopsis (Fang et 

al., 2019). There are may be many others studies that 

may not included in this study. But still we need to carry 

more functional analysis of AP2/ERF genes, as there are 

147 AP2/ERF genes in Arabidopsis and much of them 

are still undiscovered regarding there functional 

analysis. 

 

Rice (Oryza sativa) 

 

Rice is another important crop, just after availability of 

whole genome sequence of, the trend of genome-wide 

study also started in the rice plant. Just like Arabidopsis 

genome-wide study AP2/ERF, this superfamily was also 

studied in rice in 2006 that identified only 139 ERF 

genes (Nakano et al., 2006), later rice a complete 

genome-wide study of AP2/ERF superfamily was 

conducted by Rashid et al 2012(Rashid et al., 2012), 

which identified  170 AP2/ERF genes and classified into 

AP2, ERD, DREB, RAV and soloist. The rice genome was 

sequenced in 2002 with 420Mb genome size that much 

higher than Arabidopsis (61Mb). So, the number of 

AP2/ERF genes in rice was higher than Arabidopsis, 

showing duplication and originated multiple paralogs 

during divergence from dicot and monocot. However, 

the number of AP2/ERF gene in rice was not so much 

higher as compared to the size of genomes. Because 

monocot has lower number of AP2/ERF gene then dicots 

(Table 1). In the case of AP2/ERF role in rice multiple 

research have been conducted that showed the crucial 

role of these transcription factor in the development and 

growth of rice plant. For instance, OsDREB gene activate 

the drought, high salt and cold stress tolerance 

mechanism in rice (Dubouzet et al., 2003). Similarly, the 

overexpression of sub1A ERF gene produced tolerance 

to submergence (Xu et al., 2006), the TSRF1-ERF 

transcription factor improved drought tolerance in rice 

(Quan et al., 2010), the OsAP2LP gene cloning and 

expression depicted its role in stresses in response 

(ZHOU et al., 2010), OsDREB1F overexpression 

increased drought, salt and low temperature tolerance in 

Arabidopsis and rice (Wang et al., 2008), expression of 

OsDEB2A also enhanced dehydration, and salt stress 

tolerance in rice (Mallikarjuna et al., 2011), OsEATB 

regulate gibberellin biosynthetic mechanism in rice (Qi 

et al., 2011), OsEREBP1 overexpression improved biotic 

and abiotic stress in rice (Jisha et al., 2015), the OsRMC 

is also controlled by AP2/ERF in rice (Serra et al., 2013), 

over expression of TERF2 transcription factor conferred 

cold tolerance in rice (Tian et al., 2011), the AP2/ERF 

genes also regulated RLK6 gene in rice (Wang et al., 

2011b), Sun et al. (2017a) reviewed the function and 

structure of AP2/ERF in rice summarized the important 
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contribution of Ap2/ERF gene in multiple biological and 

physiological function in rice plant. Recent studies also 

demonstrated AP2/ERF superfamily contribution in the 

water deficit response (Mawlong et al., 2018), the 

transcriptional regulatory network also demonstrated 

AP2/ERF gene responses under drought stress in 

transgenic rice (Ahn et al., 2017),  Sun et al. (2017b) also 

demonstrated involvement of AP2/ERF transcription 

factor in the trichom formation in rice, Tezuka et al. 

(2019) depicted the OsERF83 positively regulated 

Magnaporthe oryzea disease resistance (Tezuka et al., 

2019), AtDREB1A expression in transgenic rice showed 

tolerance to salt stress, overexpression of OSDREB1G 

conferred resistance cold stress in rice (Moon et al., 

2019), expression of OsDRAP1 also conferred tolerance 

in rice (Huang et al., 2018a), the SbAP37 over expression 

in transgenic rice modulate stresses and protein 

profiling in leaf (Parveda et al., 2017). The literature 

survey listed many AP2/ERF genes in rice, but still there 

are many other members that are still unknown. The 

expression of AP2/ERF genes showed different 

biological and physiological effect on rice. We need 

further improvement in the rice plant against biotic and 

abiotic stresses, because rice is one of the most 

important edible crops in the world. 

 

Maize (Zea mays) 

 

Maize, also known as corn, an annual crop that belongs 

to the family of grass and is considered as the 3rd most 

significant cereal crops in the world. In addition to 

human food, maize has a major contribution in animal 

feeds and many other purposes like bioethanol 

production and phytochemical metabolites. In viewing 

these important features, now maize has become the 

main subject of researchers. Maize plant was sequenced 

in 2009 with 2.3 Gb genome size. The availability of Zea 

mays genome provides facility to carry genomic and 

functional studies of maize genes. 

The AP2/ERF transcription factor was also extensively 

studied in maize plants and their important role in plant 

growth and physiology was also exhibited. In 2002, Kizis 

and Pagès (2002) identified the role of DBF1 and DBF2 

in the regulation of ABA-dependent pathway to induced 

drought tolerant in maize. Similarly, the DREB1/CBF 

AP2/ERF transcription factor over expression in maize 

improved cold stress tolarent (Qin et al., 2004), in 2007, 

Qin et al. (2007) identified the functional analysis of 

ZmDREB2A under drought and heat stresses in maize 

(Qin et al., 2007), the over expression of ZmDBP3 gene 

in transgenic Arabidopsis enhanced the drought and 

cold tolerance (Wang and Dong, 2009). In 2010 the 

Zhuang et al. (2010) carried identification , evolution 

and expression of AP2-like gene in maize (Zhuang et al., 

2010), Wang et al. (2011a) isolated ZmDBP2 and 

overexpressed in transgenic Arabidopsis that improved 

the drought stress tolerance in plant. The first genome-

wide analysis of AP2/ERF in Zea mays in 2012 (Zhou et 

al., 2012) just after availability of whole genome 

assembly of maize. This genome-wide study identified 

292 AP2/ERF genes and classified them into AP2, DREB, 

ERF and RAV. The number of AP2/ERF genes in maize 

was greater than both Arabidopsis (139 Ap2/ERF) and 

rice (172 AP2/ERF), because of tis large genome size 

then the two mentioned plants. After Genome-wide data 

availability multiple genome wide association and 

expression profiling was carried in maize. For instance, 

in 2013, Liu et al. (2013) carried ZmDREB genetic 

association with drought at seedling stage of maize. In 

2014, Du et al. (2014) carried genome-wide analysis of 

AP2/ERF in maize under waterlogging stress and 

showed their role in drought tolerant, in 2016, Hussain 

et al. (2016a) performed a detailed genome-wide 

characterization, structural and functional prediction of 

ERF family in maize. After genome-wide identification 

and characterization of Ap2/ERF in maize, the functional 

analysis of individual genes become the research target 

of researchers. In 2016, Zhou et al. (2016) identify 

ZmDB3 as novel Ap2/ERF transcription factor involved 

in multiple abiotic stress tolerance. Similarly, the 

ZmDREB4.1 identified as negative regulation of plant 

growth and development (Li et al., 2018), the 

ZmEREB94 involve in the starch granules formation in 

maize (Li et al., 2017), ZmERF1 is involve in hormone 

and stress response, ZmEREB156 gene involved in 

sucrose and ABA regulation in starch biosynthesis in 

maize (Huang et al., 2016), over expression of DREB 

genes increased maize yield (Simmons and Sivasankar, 

2018), ZmEREB180 shows water logging tolerance in 

maize (Yu et al., 2019). The genome-wide study of 

AP2/ERF genes shows 184 AP2/ERF genes classifying 

into five subfamilies i.e. ERF (107 genes), DREB 

(51genes), AP2 (22 genes), RAV (3 genes) and one 

soloist gene (Du et al., 2014; Hussain et al., 2016a). 

Phylogenetic tree shows further subgroups of DREB and 

ERF that were also similar to other crop. The literature 
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survey of AP2/ERF genes in maize summarized that 

AP2/ERF genes have great contribution in the regulation 

of plant growth and development; however, lots of 

AP2/ERF genes are still uncharacterized regarding their 

function. So, to improve the crop quality of maize, it is 

require uncovering important AP2/ERF genes for future 

use. 

 

Wheat (Triticum aestivum) 

 

Wheat is a grass, also known as Triticum aestivum 

(common wheat), belongs to poaceae family. It produces 

cereal grains which is use as a staple food. Wheat is the 

one of a leading crop that is cultivated and exported 

much more than any other crop.  It is an important 

source of carbohydrates for human as well as animals. 

Wheat genome is more complicated than other poaceae 

family, as it is hexaploid with AABBDD (A genome from 

T. monococcum wheat, B genome from T. turgidum, D 

genome from T. tauschii) genome composition. The first 

genome sequence assembly was done in 2014, but later 

in 2018 a new wheat genome assembly was also 

published by international wheat genome sequence 

consortium (IWGSC). 

Wheat production is promising due to multiple biotic 

and abiotic factors. One of an abiotic factor is drought 

which is a major problem in wheat production. Plant 

breeding and genetics are trying to developed drought 

tolerant wheat through conventional breeding methods. 

A drought tolerant screening strategy is not only 

increase its tolerance against drought but also enhance 

its yield. 

In order to find the genetic makeup of tolerant plants 

multiple studies have been done on different drought 

related genes including, transcription factor and other 

aquaporins gene families. The Plant transcription factor 

database 

(http://planttfdb.cbi.pku.edu.cn/index.php?sp=Tae) 

identified 3606 Transcription factors with 51 families 

using denovo approach. Of these 51 families, AP2/ERF 

gene family is one of a largest family that contributed in 

drought tolerant. A genome-wide study has been done 

by Jin et al 2010; 

(https://link.springer.com/article/10.1007%2Fs11033-

010-0162-7), and predicted 117 AP2/ERF gene (57 

DREB, 47ERF, 9AP2, 3RAV and one Soloist). However, 

this number is very low as compared to other monocots, 

so new genome-wide study is required using latest 

wheat genome assembly with advance approachs. 

Multiple AP2/ERF genes have been isolated and 

functionally characterized. For instance,  in 2010 Dong et 

al overexpressed TaPIEP1, a pathogen-induced ERF, 

confer resistant to fungal 

pathogen(https://link.springer.com/article/10.1007/s1

0142-009-0157-4), Similarly,  in 2012 Dong et al 

(https://doi.org/10.1016/j.gene.2012.09.039), cloned 

TaERF4 and expressed in wheat 

(https://www.sciencedirect.com/science/article/pii/S0

378111912011201), that enhance sensitivity of plants 

to salinity, suggesting that TaERF4 may act a 

transcription repressor. 

 

Chinese cabbage (Brassica rapa) 

 

Brassica crops are used for human nutrition and are 

important in daily life. Chinese cabbage (Brassica rapa) 

is one of best worldwide grown crops of Brassica crops, 

economically important due to its high yielding capacity 

and good quality, which attracted researchers to study 

its genetic and genomic characteristics. Genome 

sequencing of Brassica was completed in 2011 under 

Brassica rapa Genome Sequencing Project Consortium 

(Wang et al., 2011c). The Brassica rapa genome contains 

41,174 coding genes. In viewing the importance of 

AP2/ERF gene family, a genome-wide study was made 

by Song et al. (2013). They identified 291 AP2/ERF 

genes, consisting of 109 DREB, 139 ERF, 49 AP2, 14RAV 

and 1 Soloist gene. The number of genes in chines 

cabbage is higher than the above-mentioned species 

because the genome of chines cabbage is larger as 

compared to foxtail millet and Arabidopsis. 

Furthermore, expression of AP2/ERF gene in Brassica 

rapa also identified that maximum expression takes 

place in the root, which is 31.95%, and minimum in 

buds, which is 5.85% (Table 1; Figure 3) (Song et al., 

2013). A similar expression was also seen in Arabidopsis 

and foxtail millet. So, it means most of the AP2/ERF 

genes are express in root tissue that is the main tissue 

which deals the drought and salinity condition. 

 

Sorghum (Sorghum bicolour) 

 

Sorghum belongs to grass species and is used as food 

for animals and humans, as well as sorghum is also 

used for biofuel production. It is among tropical and 

subtropical grown crops (Dillon et al., 2007). Sorghum 

https://doi.org/10.33687/phytopath.011.02.4259
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is considered as the world’s fifth most commonly 

grown cereal crops. It is an annual as well perennial 

crop (Prasad and Staggenborg, 2009). Sorghum has 

the high tolerance to drought, salinity and toxic 

environment (Almodares et al., 2011; Bibi et al., 

2012). Research is being conducted to develop a 

genetic cross that will make the plant more tolerant to 

cooler temperatures and to unravel the drought 

tolerance mechanisms since it is native to tropical 

climate (Ogbaga et al., 2014). The genome of Sorghum 

bicolour was sequenced between 2005 and 2007 

(Paterson et al., 2009). 

 

 
Figure 3. AP2/ERF transgenic expressions in different crops against biotic and abiotic stress, drawn through Edraw 

Max 8.4. 

 

In sorghum, the total of 126 AP2/ERF gene families 

was predicted and distributed into 16 AP2, 105 ERF, 4 

RAV and 1 soloist subfamilies (Yan et al., 2013). On the 

basis of phylogenetic analysis, the ERF family was 

divided into 12 subgroups, from A1-A6 (group A) and 

B1-B2 (group B). Group A encodes CBF/DREB proteins 

and Group B encodes ERF proteins (Sakuma et al., 

2002). The total of 105 SbERFs genes was spread into 

33 sister groups. Among 105 SbERF genes, 13 genes 

were predicted to have tissue-specific expression; 

SbERF 5 in the embryo; SbERF 7 in the root; SbERF 1, 

19, 20, 26, 57, 72, and 74 in seedlings; SbERF 45 in the 

rhizome; SbERF 14 and 71 in leaves and SbERF 105 in 

the ear. Also, the genes are irregularly distributed on 

10 chromosomes, and the maximum number is on 

chromosome 2, which contains 18 genes, and the 

minimum number is on chromosome 8 which contains 

2 genes, and the interesting thing is that all genes are 

located on either the top or bottom of the chromosome 

(Table 2; Figure 3). 

Sea Island cotton (Gossypium barbadense) 

 

Cotton is one of the major crops grown in Pakistan and is 

also a worldwide renowned crop grown for its economic 

importance. A lot of stress factors (biotic and abiotic 

stress factors) are known to cause a reduction of quality 

and yield in the cotton crop worldwide (Liu et al., 2017). 

Among all those stress factors in cotton, fungal-induced 

Verticillium wilt (V. wilt) is one of the major problems 

that has been studied extensively (Cai et al., 2009). 

Gossypium barbadense (Sea Island cotton) is more 

tolerant of the pathogenic fungus wilt (V. wilt). 

Liu et al. (2017) by using the technique of RACE in 

Gossypium barbadense identified and reported another 

AP2/ERF TFs gene which is of novel kind and they named 

it as Gossypium barbadense ethylene responsive factors 

(GbERFb), they induced the GbERFb gene expression by 

applying treatments with ethylene, methyl jasmonate, 

salicylic acid, by inducing wounds, H2O2 and by infecting 

with soil-borne pathogenic fungus Verticillium dahliae 
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which showed that in response to such stresses GbERFb 

recognizes and binds to the GCC box involving cis-acting 

elements and it can also interact with Gossypium 

barbadense mitogen-activated protein kinase 

(GbMAPKb). Evidence indicate that GbERF1-like TFs are 

produced in response to the biotic stresses and provide 

resistance to wilt caused by Verticillium dahliae and are 

involved in lignin synthesis (Guo et al., 2016; Meng et al., 

2010). Over-expression of the EREB1 in cotton can 

increase tolerance of cotton cultivars to Verticillium 

dahliae (Meng et al., 2010). Similarly, over-expression of 

ethylene responsive factors like GbERF1-like in Sea Island 

cotton, can enhance the tolerance of cotton and A. thaliana 

against the Verticillium dahliae, while its down-regulation 

increases the cotton susceptibility to Verticillium wilt 

(Table 1; Figure 3) (Liu et al., 2017). 

 

Table 2. Transgenic plants expressing different AP2/ERF transcription factors and their roles. 

Gene Name Plant Functions Reference 

RAV1 

Kiwi fruit Water logging treatment (Zhang et al.) 

RAV2 

ERF1 

ERF5 

DRED 

MaDRED1 

Banana Regulatory roles in fruit ripening 
 

(Xiao et al., 2013) 

MaDRED2 

MaDRED3 

MaDRED4 

AtNAP 

Arabisopsis Significantly involved in leaf senescence 

(Guo and Gan, 2006) 

ORE1 (Kim et al., 2009) 

WRKY53 (Miao et al., 2004) 

 

 

GbERFb 

Sea island cotton 

Disease resistance to Verticillium dahliae 

(V. dahliae) infection,  Crop resistance to 

pathogens 

(Liu et al., 2017) 

GbERF1-like 

Response to biotic stress 

(Guo et al., 2016) 

 

GbHcm1 (Zhang et al., 2016) 

GbWRKY1 (Li et al., 2014) 

rd29A 

Arabidopsis Dehydration 

(Jaglo-Ottosen et al., 1998; 

Kasuga et al., 1999; 

Sakuma et al., 2002) 

DRER2  

CBF1 (Hsieh et al., 2002) 

DREB-1 (Liu et al., 1999) 

AtEBP (Büttner and Singh, 1997) 

JERF3 

 

 

 

Tobacco Salt tolerance 

(Wang et al., 2004) 

GmERF3 

 

 

(Zhang et al., 2009) 

GmERF7 (Zhai et al., 2013) 

SodERF3 (Trujillo et al., 2008) 

GERF1  

ERF96 (Wang et al.) 

HARDY  

 

Arabidopsis 

(Karaba et al., 2007) 

HvRAF  

DREB2 (Nakashima et al., 2000) 
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BrERP4  

GmDREB1 Soybean (Jin et al., 2010) 

PDF1.1  

Arabidopsis 
Enhance resistance to Botrytis 

(Meng et al., 2013) 

PDF1.2 (Meng et al., 2013) 

AtERF73 
Arabidopsis 

Tomato 
Enhance Ethylene Biosynthesis 

(Li et al., 2007) 

LeERF1 (Xiao et al., 2013) 

TERF2/LeERF2 (Zhang and Huang, 2010) 

SublA 
 

Rice 
Allow rice to adept deep water 

 

SNORKEL1 (Hattori et al., 2009) 

SNORKEL2  

 

CONCLUSION 

With the advancement in genome sequencing 

technologies, now, several complete with highly refined 

genome assemblies are available.  Due to availability of 

these assemblies and bioinformatics tools, it became 

possible to carry genome-wide studies of gene families. 

The genome-wide study is a powerful approach to 

identify gene families in new assembled genomes. It also 

provides clear classifications, based on genes and 

proteins features, which is helpful for functional 

validation. One example of genome-wide study is the 

classification and expression profiling of AP2/ERF 

superfamily in many important crops. In this review we 

have provided a detail report of all genome-wide studies 

in agronomically important crops. As AP2/ERF 

superfamily is a large family of transcriptino factor that 

regulate stress responsive genes. The literature servary 

also demonstrated its involvedmen in multiple biotic 

and abiotic stress reponses in many crops. Howeve, still, 

there is limitted infomration regarding its fucntional 

validation. The current assembeled genome-wide 

studies might be helpful for the crops improvement, 

especially plant tolerance under drought, salinity, cold 

and freezing and diseases, by applying advance 

molecular biology tools like genetic engineering and 

genome editting on AP2/ERF genes. 
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