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Studies of the wheat Zymoseptoria tritici blotch (ZTB) status in different locations, on 
agronomic practice, and pathogen variability has not yet been studied in Ethiopia. As 
a result, the goal of this study was to determine ZTB's distribution and intensity, as 
well as the morphological variability of isolates. In Oromia's central-southeastern 
region, zones and districts were purposefully chosen, whereas kebeles were 
determined via a systematic sampling procedure. In a generalized linear model 
(GLM), the mean comparison of fixed effects was examined using least significant 
difference (LSD) tests. Colony texture, shapes, and colors were used to identify 
isolate variability. Pearson correlation was used to examine the relationship between 
disease intensity and the independent variable, and multiple regression analysis was 
used to estimate the magnitudes of the association. A total of 108 fields were 
examined, with the percent occurrence of zones (88.9 to 100%) and districts (77.8 to 
100%) recorded. ZTB intensity was not significantly different across districts (p < 
0.05) while severity was significantly different across zones (p < 0.01). Weed 
infestation (r = 0.78 and r = 0.20) and growth phases (r = 0.72 and r = 0.36) had a 
positive correlation, although plowing frequency (r = -0.77 and r = -0.43) had a 
negative correlation with incidence and severity. There are 43 isolates classified into 
four colors, three textures, and three growth forms. The ZTB epidemics in current 
research areas are need more consideration and they should be prioritized for 
integrated management. Our data suggest that weed control, soil tillage, and crop 
rotation are all effective ways to mitigate the effects of wheat ZTB. 
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INTRODUCTION 

Wheat Zymoseptoria tritici blotch (ZTB) is a devastating 

disease that causes problems in many parts of the world 

(McDonald et al., 2015; Mehra et al., 2018; McDonald 

and Mundt, 2016; Dalvand et al., 2018). It is a 

hemibiotrophic fungal pathogen (Zhong et al., 2017) that 

causes significant yield loss in wheat by disrupting the 

photosynthetic component of the plant (Griffiths and Ao, 

1980; Eyal, 1981). 

ZTB epidemics in wheat fields are mostly determined by 

host vulnerability and climatic factors (Eyal, 1987). 

Inoculum density, strain pathogenicity, and cultural 

practices are all factors that influence it (Kema and van 

Silfhout, 1997; HARRAT and BOUZNAD, 2018). The 

principal inoculums are obtained through diseased plant 

residue, seeds, and alternate hosts (Ponomarenko et al., 
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2011; Holloway, 2014; Steinberg, 2015). 

ZTB infestations have been related to wheat yield losses 

of 30 to 54% (Eyal, 1987) and even greater than 60% 

(Shipton et al., 1971). ZTB causes 25 to 82% wheat yield 

loss in Ethiopia, with incidence and severity increasing 

in the key production areas (Abebe et al., 2017; Abeyo et 

al., 2011; Hailu and Woldeab, 2015; Takele et al., 2015; 

Said and Hussien, 2013). The losses in yield related to 

severe ZTB occurrences have been found to vary from 

31 to 53% (Babadoost and Hebert, 1984) to 56% (Eyal, 

1981). ZTB can be found all around the 

world (Ponomarenko et al., 2011). 

For the first time, ZTB was discovered in 1956 in 

Ethiopia (Stewart and Yiroou, 1967). Nowadays, ZTB is 

distributed in Oromoia, Amhara, SNNPR regions of 

Ethiopia (Tadesse et al., 2018; Said and Hussien, 2013; 

Azanaw et al., 2017). Its severity is highest in Ethiopia's 

central highlands (Ayele et al., 2008; Ababa Tarafa, 

2020) and in environments with high humidity, altitude, 

and warmer temperatures (Azanaw et al., 2017; Eyal, 

1987; Ponomarenko et al., 2011; Ghini et al., 2008). 

The pathogen's diverse population is to account for the 

high intensity. Z. tritici exhibits distinct growth forms, 

hues, and textures, according to investigations of colony 

morphology on various media (HARRAT and BOUZNAD, 

2018; Ayad et al., 2014; Bentata et al., 2011). This 

suggests that the pathogen is very variable among the 

population due to genetics (Kema and van Silfhout, 

1997; Mekonnen et al., 2020). 

Aside from the assessment, one of the few types of ZTB 

research done in Ethiopia was the evaluation of fungicides 

and wheat cultivars under natural infection. However, 

there have been no morphological or pathogenic 

variability studies of Z. tritici isolates yet. Because the 

disease is dynamic, ongoing disease assessment and 

studies of disease variability are utilized to alert farmers 

and governments early, devise management practices, 

and conduct additional research. The goal of this research 

was to evaluate ZTB distribution and intensity in a 

previously unstudied location, as well as to identify the 

variety of collected isolates based on colony colors, 

growth patterns, and textures. 

 

MATERIALS AND METHODS 

Description of the survey areas 

During the 2019 cropping season, ZTB field surveys 

were done in central-southeastern Oromia, Ethiopia. 

Arsi, West Arsi, Bale, and West Shoa zones were all 

surveyed (Figure 1). 

 

 
Figure 1. Map showing the geographic locations of the survey zones in 2019 in Oromia, Ethiopia. 
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Sampling method and strategy 

From flowering until maturity, wheat ZTB survey was 

carried out. The four zones and three districts were chosen 

from the region using a purposive sampling method. At 5-

10 km intervals along the main, available, and accessible 

roadsides, three kebeles within each district and three 

farms within each kebele were assessed (Table 1). Farmers' 

training centers and research stations were also surveyed 

at the same time. Infected wheat leaf tissues were collected, 

as well as 91 green leaves with pycnidia and a few dried 

samples from 108 farmers' fields in paper bags for 

pathogen isolation (Figure 2A and B). 

 

Table 1. Description of surveyed areas in 2019 in Oromia, Ethiopia. 

Zones Districts 
No. of farmers 

field 
assessed/kebele 

No. of farmers 
field assessed 

/district 
Longitude Latitude Altitude range 

West 

Shoa 

Welmera 3 9 038028'60'' 09052'6'' 2252-2577 

Tokekutaye 3 9 037043'45'' 08051'31'' 2245-2792 

Ambo 3 9 037050'49'' 08053'26'' 2463-2988 

West 

Arsi 

Adaba 3 9 039026'59'' 07001'33'' 2357-2498 

Dodola 3 9 039003'36'' 07059'33' 2410-2573 

Assassa 3 9 039009'29'' 07002'28'' 2386-2573 

Arsi 

Sire 3 9 039030'69'' 08015'53'' 2018-2366 

Hetosa 3 9 039014'37'' 08010'45'' 2123-2244 

Lemunabilbilo 3 9 039016'22'' 07018'46'' 2602-2938 

Bale 

Sinana 3 9 0400'17'48' 07064’30’’ 2481-2625 

Goba 3 9 039058'23'' 07011’40’’ 2392-2472 

Agarfa 3 9 039056'53'' 07016'36'' 2344-2462 

Total  36 108    

 

  
Figure 2. Symptoms of Zymoseptoria tritici blotch on the leaves of the wheat. 
 

Diseases Assessment 

Depending on the size of the field, 1 m2 quadrant was 

thrown at three to five spots at random, with 15 meter 

intervals along the section. Each 1 m2 quadrant had 14 

plants randomly selected and analyzed for ZTB 

incidence and severity (Eyal, 1987). ZTB prevalence 

was estimated by dividing the number of infected fields 

by the total number of fields examined, and incidence 

was obtained by dividing the number of infected plants 

by the total number of plants assessed from three 

quadrants (Cooke, 2006). Severity was measured on a 

two-digit scale (Saari and Prescott, 1975). The first 

digit (0-9) represents the ZTB upward migration on the 

plant, and the second digit (0-9) determines the 

severity of the total foliar infection on the whole plant 

(Eyal, 1987).  

Its severity index was determined by the formula; 

% 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =
𝐷1

𝑌1
∗

𝐷2

𝑌2
∗ 100 

Where, D1 representing STB upward movement, 

A B 
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whereas D2 is the severity. Y1 represents the maximum 

ZTB upward movement and Y2 represents the maximum 

severity (Sharma and Duveiller, 2007). 

Data of agronomic practice (Table 2), altitude (Table1), 

and crop growth stage were gathered to do an 

association with ZTB intensity. The longitude and 

latitude coordinates of each field were taken using a 

global positioning system (GPS) (Table 1).

 

Table 2. Descriptions of agronomic practice and crop growth stage with their qualitative measurement and 

quantitative levels. 

Plowing 

frequency 
 Weed infestation  Crop growth stage  

Qualitative 

measurement 

Quantitative 

levels 

Qualitative 

measurement 

Quantitative 

levels 

Qualitative 

measurement 

Quantitative 

levels 

One time 1 Low 1 Flowering  1 

Two times 2 Medium 2 Milking  2 

Three times 3 High 3 Dough 3 

Four times 4 Very high 4 Maturity 4 

 

Isolation process 

Isolation was carried out in the Holeta National 

Biotechnology Research Center's Microbiology 

Laboratory at Holeta, Ethiopia. With a little modification 

from the original protocol, the isolation was completed 

(Eyal, 1987). The filter paper was placed on the Petri 

plate and wetted with distilled water in the first stage. 

The wheat leaves were then placed on the wetted filter 

paper in a 7 cm segment. 

For enhancing pycnidiospore oozing from an opening of 

the pycnidium (ostiole), the petridish was incubated at 

24 ℃ for 2 to 8 hours depending on the stages of leaves. 

The produced oozes were transferred to potato dextrose 

agar (PDA) supplemented with chloramphenicol 

succinate 250 mg for 1 liter distilled water using a 

dissecting microscope or stereoscope (Eyal, 1987). 

Pycnidia that did not generate ooze, on the other hand, 

were extracted from the leaf epidermis and placed onto 

PDA plates using a sterile needle. 

The colony was picked via sterile loops and smeared onto 

PDA plates after seven days. The streaked plates were 

incubated for seven days in a 24 ℃ incubation chamber to 

promote fungal growth. The single pinkish-orange, dark 

hard color colony that matched (HARRAT and BOUZNAD, 

2018) were streaked on PDA plates and then chosen and 

distributed on new PDA plates without antibiotics. 

 

Colony morphology 

On PDA, cultural appearances (colony color, shapes, and 

texture) were identified based on macroscopic 

inspection. The colony morphology was described using 

both a laboratory manual and a graphical atlas for fungal 

identification (Watanabe, 2010). 

 

Data analysis 

The data was analyzed using SAS version 9.3 statistical 

software (Stokes et al., 2012). The survey data were 

converted using ARCSINE after Kolmogorov-Smirnov 

analysis showed the substantial differences (p < 0.05) 

and exhibited a non-normal distribution (Kema and 

van Silfhout, 1997). Fixed factors were structured in 

three phases of nested design (Tsedaley et al., 2016), 

with the exception of farmers' fields, which were 

regarded as a random effect (Table 3). Kebeles were 

nested under districts in the three levels of nested 

design, while districts were nested under zones. 

Pearson correlation was used to examine the 

relationship between ZTB intensity and agronomic 

practice, altitude, and crop growth phases, and multiple 

regressions were used to predict the magnitudes of 

ZTB intensity. 

 

RESULTS  

Distribution of Zymoseptoria tritici blotch across a 

location 

Wheat ZTB was found in all of the investigated areas, 

with prevalence rates of 100%, 88.8%, and 96.3% in 

Bale, Arsi, and both West Arsi and West Shoare, 

respectively. The over all of the surveyed zones had the 

highest ZTB prevalence (95.4%). It was found to be 

100% prevalent in eight districts (Tokekutaye, Ambo, 

Welmera, Adaba, Dodola, Hetosa, Goba, Agarfa, and 

Sinana) but Lemunabilbilo district having the lowest 

prevalence (77.8%) (Figure 3). 
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Table 3. Nested ANOVA for the disease intensity of wheat Zymoseptoria. 

Source of variation            Degree of freedom     
Mean square 

Disease Incidence Disease Severity 

Model 35 478.04ns 401.2ns 

Zone 3 637.6ns 1969.9** 

District(Zone) 8 611.7ns 245.9ns 

Kebele(Zone*District) 24 413.6ns 256.8ns 

Error 72 426.5 313.1 

Corrected Total 107   

 

 
Figure 3. Disease distribution and intensity in 2019 in Oromia, Ethiopia. 

 

The intensity of Zymoseptoria tritici blotch across a 

location 

The incidence of ZTB was not substantially different at 

the zone and district levels (p < 0.05). This indicated that 

it has infected wheat crops in all of the surveyed areas in 

a similar manner. West Shoa, West Arsi, Arsi, and Bale 

zones had ZTB incidences of 95.7%, 94.7.9%, 87.7%, and 

99%, respectively. The maximum incidence (100%) was 

recorded in three districts (Tokekutaye, Dodola and 

Sinana), while the lowest incidence (75%) was recorded 

in Lemunabilbilo (Figure 3). 

Between the four zones, ZTB severity index revealed 

highly significant (p < 0.01) differences. The severity 

indexes of the Arsi and Bale zones were notably 

different, but the severity indexes of the other zones 

were similar (Table 4). The severity index of the 

districts, on the other hand, did not differ substantially 

(p < 0.05). At district level, Tokekutaye received the 

highest severity rating of 42%, while Lemunabilbilo 

received the lowest severity index of 12% (Figure 3). 

 

Table 4. The effect of four zones on disease severity. 

Zones  Disease Severity Index (%) 

West Shoa 31.69ab 

West Arsi 23.5ab 

Arsi 15.64b 

Bale 34.57a 

CV 40.7 

 

Association of Zymoseptoria tritici blotch with 

agronomic practices, altitude, and wheat growth 

stages 

ZTB severity score showed a positive correlation (r = 

0.78) and a highly significant difference (p < 0.001) with 

weed infection levels. Plowing frequency was found to 

have a negative relationship with ZTB severity index (r = 

-0.77) and incidence (r = -0.43). ZTB severity and wheat 

crop stages showed strong positive relationships (r = 

0.72). According to our current findings, the increase in 

altitude in meters has no significant relationship with 

disease severity (p < 0.05) (Table 5). 
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Multiple regression 

The degree of disease intensity was predicted, and there 

was a highly significant negative relationship between 

disease incidence and plowing frequency (p < 0.01). 

There was no correlation between disease incidence and 

other parameters. The disease severity predicted 

increased considerably (p < 0.05) as weed infestation 

grew, decreased significantly (p < 0.001) as plowing 

frequency increased, and increased significantly (p < 

0.001) as crop growth stages increased, but no 

significant (p < 0.05) as altitude increased (Table 6). 

 

Table 5. Pearson’s correlation coefficients of Zymoseptoria tritici blotch intensity over agronomic practice, altitude, 

and crop growth stages. 

Variables ALT WIL PF GS DSI DI 

ALT 1 0.01ns 0.012ns -0.002ns -0.008ns -0.14ns 

WIL  1 -0.66*** 0.69*** 0.78*** 0.2* 

PF   1 -0.68*** -0.77*** -0.43*** 

GS    1 0.72*** 0.36*** 

DSI     1 0.36*** 

DI      1 

DI - Disease incidence, DSI - Disease severity index, WIL - Weed infestation level, PF - Plowing frequency, ALT - 

Altitude, and GS - Growth stage. * Significant level at p < 0.05, ** Significant level at 0.01, and ***Significant level at 

0.001. 

 

Table 6. Multiple regression analysis of Zymoseptoria tritici blotch intensity over agronomic practice, altitude, and 

crop growth stages. 

Predictor 
Parameter estimate 

Incidence Severity 

Constant 167 42 

GS 4.44ns 3.19* 

PF -11.8** -10.4*** 

WIL -4.54ns 9.73*** 

ALT -0.0141ns -0.00075ns 

Disease Incidence = 167 + 4.44 GS - 11.8 PF - 4.54 WIL - 0.0141 ALT,  

Determination coefficient R2 = 0.22; WIL-Weed infestation level, PF-Plowing frequency, ALT - Altitude, and GS - 

Growth stage; Disease severity index = 42.0 + 3.19 GS - 10.4 PF + 9.73 WIL - 0.00076 ALT; Determination coefficient 

R2= 0.74; WIL-Weed infestation level, PF-Plowing frequency, ALT - Altitude, and GS - Growth stage; Ns indicates non-

significant 

 

Microscopic and Morphological variability 

Zymoseptoria tritici isolates produced very thin 

pycnidiospores with more than three septation and few 

curves in form. The shapes, size and septa of 

pycnidiospores of ZTB isolates are the same. The 

Zymoseptoria tritici isolates were produced 

macropycnidiospores of very thin, and more than three 

septation and erect in shape. Also, the isolates were 

produced micropycnidiospores in those are without 

septa (Figure 4). 

Six pinkish colony isolates had a creamy texture and 

three different growth forms: dense, medium, and 

sparse. The whitish color isolates had a creamy texture, 

and the ooze floods the sowing lines. On PDA, dark-

colored isolates grow compactly, densely, and sparsely. 

Brown color isolates have an intermediate, solid, and 

creamy texture, with sparse and thick growth patterns 

(Table 7 and Figure 5). 

Only two (4.5%) of the total isolates showed whitish 

colony color. A colony of black color was composed of 28 

isolates (63%) of the total isolates, and this colony 

became the most dominant. Out of the total isolates 

analyzed, 8 (18.2%) have a brown color and 6 (14%) 

have a pinkish color. 
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Figure 4. Pycnidiospores of wheat Ethiopian Zymoseptoria tritici. 
 

    

    

    

Figure 5. The colors of wheat Ethiopian Zymoseptoria tritici isolates on PDA; Pinkish, brown, whitish and black colors 
 

Table 7. Morphological variability of Ethiopian Zymoseptoria tritici isolates. 

Zones No. of isolates Colony color Colony growth Texture 

West Shoa 23 
Black, pinkish, and 

brown colors 

Dense and intermediate 

sparse 

compact, cream, and  

intermediate 

West Arsi 6 Brown, black colors 
Dense 

intermediate and sparse 
intermediate and compact 

Arsi 6 
Whitish, pinkish, and 

Black color 

Dense intermediate and 

sparse 
Cream and compact 

Bale 9 
Pinkish, brown, and 

Black color 

Dense intermediate and 

sparse 

Cream, intermediate, and 

compact 

 

The colors of nine isolates generated from Bale samples 

varied. Four isolates were pinkish in color, three were 

brown, and two were black in color. The isolates were 

taken from the Arsi zone, and one was whitish, three 

were black, and two were pinkish. One brown and five 

black colors were found in West Arsi isolates. Eighteen 
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isolates from West Shoa produced black colonies, while 

one and four isolates produced pinkish and brown 

colonies, respectively (Table 7 and Figure 5). A total of 

44 Z. tritici isolates were obtained from 91 samples 

collected across the Oromia region (Table 8 and Figure 

6). 

 

 
Figure 6. Map showing the geographic locations of the Zymoseptoria tritici isolates in 2019 in Oromia Ethiopia. 

 

Table 8. Collection area and varieties source of Zymoseptoria tritici isolates in 2019 in of Oromia, Ethiopia. 

Sr. No 
Isolate code Geographical source Varieties source 

 Zone District Kebele Names 

1 EtAm-1 West Shoa Welmera 
Holeta agricultural research 

center in the station 
Alidoro 

2 EtAm-2 West Shoa Tokekutaye Handersa Danda’a 

3 EtAm-3 West Shoa Tokekutaye Maruf Digalu 

4 EtAm-4 West Shoa Ambo Bojibilo Danda’a 

5 EtAm-5 West Shoa Ambo Yaechebo Hidase 

6 EtAm-6 West Shoa Tokekutaye Malkedera Danda’a 

7 EtAm-9 West Shoa Ambo Kuregatira  

8 EtAm-10 West Shoa Ambo Bojibilo Danda’a 

9 EtAm-11 West Shoa Ambo Bojibilo Danda’a 

10 EtAm-12 West Shoa Ambo Bojibilo Danda’a 

11 EtAm-13 West Shoa Ambo Bojibilo Danda’a 

12 EtAm-14 West Shoa Ambo Bojibilo Danda’a 

13 EtAm-16 West Shoa Ambo Kibakube Kingbird 

14 EtAm-19 West Shoa Ambo Yaechebo Danda’a 

15 EtAm-20 West Shoa Tokekutaye Malkedera  

16 EtAm-21 West Shoa Tokekutaye Maruf Hidase 
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17 EtAm-22 West Shoa Tokekutaye Maruf Digalu 

18 EtAm-23 West Shoa Tokekutaye Maruf Huluka 

19 EtAm-26 West Shoa Tokekutaye Gorobiyo Gololcha 

20 EtAm-27 West Shoa Tokekutaye Adersabila Hidase 

21 EtAm-28 West Shoa Tokekutaye Adersabila Danda’a 

22 EtAm-29 West Shoa Tokekutaye Adersabila Hidase 

23 EtAm-30 West Shoa Tokekutaye Adersabila Hidase 

24 EtB-1 Bale Goba Sinja Hidase 

25 EtB-2 Bale Sinana Shalo Ogolcho 

26 EtB-3 Bale Agarfa   

27 EtB-4 Bale Goba Sinja Candidate 

28 EtB-5 Bale Agarfa Ilani Ogolcho 

29 EtB-6 Bale Sinana Amalama Ogolcho 

30 EtB-7 Bale Sinana Robearea Ogolcho 

31 EtB-8 Bale Gasera Wute  

32 EtB-10 Bale Goba Misira Ogolcho 

33 EtA-3 Arsi Hetosa Hatehandode Ogolcho 

34 EtA-4 Arsi Hetosa Hatehandode Kubsa 

35 EtA-7 Arsi Hetosa Seruanketo Ogolcho 

36 EtA-8 Arsi Lemunabilbilo 
Kulumsa agricultural 

research center in sb-station 
 

37 EtA-11 Arsi Hetosa Hatehandode Kubsa 

38 EtA-19 Arsi Tiyo Dosha Danda’a 

39 EtSh-1 West Arsi Assassa Debara Ogolcho 

40 EtSh-2 West Arsi Dodola Bekola Paven-76 

41 EtSh-4 West Arsi Dodola Kechamachare Ogolcho 

42 EtSh-5 West Arsi Assassa Edobelo Kubsa 

43 EtSh-6 West Arsi Assassa Tuse Kubsa 

44 EtSh-7 West Arsi Assassa 
Kulumsa agricultural 

research center in sb-station 
 

 

DISCUSSION 

The significant prevalence of ZTB in the examined 

locations can be attributed to favorable environmental 

conditions for ZTB development (regular rains and mild 

temperatures) (Gilchrist and Dubin, 2002; Teklay et al., 

2015). 

In the altitude range of 2072 to 3043 m.a.s.l, (Tadesse et 

al., 2018) reported a 38 to100% ZTB incidence. 

Furthermore, the current findings demonstrate that ZTB 

is found in 100% of the assessed locations, indicating 

that it is a severe danger to wheat production in the 

country. The ZTB disease is very important in the entire 

world. Argentina, Ethiopia, Iran, the United States, the 

Netherlands, Russia, New Zealand, and Australia are 

among the largest wheat-producing countries on the 

planet. In Iran, Tunisia, and Morocco, it is a major issue 

with durum wheat (Ponomarenko et al., 2011; Eyal, 

1987). 

High inoculum levels associated with farming methods, 

particularly in the examined areas, are thought to be the 

cause of the high incidence. Farmers, in general, do not 

use appropriate crop rotation systems with non-

pathogen host plants and cultivate wheat from year to 

year, particularly in the Arsi and Bale zones. Because it 

overwinters in the soil and decaying plant residues as 

pycnidia, has a higher chance of inoculum survival 

(Ponomarenko et al., 2011). 

The high ZTB incidence found in this study is due to high 

inoculum build up, susceptible cultivars planted by 

farmers, and favorable environmental conditions across 

all agro-ecologies in the examined areas of the country. 

Crop rotation with non-host crops was not practiced by 

the majority of farmers in the examined area, regardless 

of zone, and poor weed management and low plowing 
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frequency were also prevalent. In comparison to 

Ethiopia’s central highlands, monocropping is typical in 

the Arsi and Bale zones. 

Greater weed population can exacerbate the severity of 

ZTB. This could be due to wheat competing with weeds 

for nutrients, water, space, and sunlight, resulting in 

increased wheat succulence and less ability to resist the 

pathogen physically (Agrios, 2012). The plant’s canopy 

draws the wheat leaves closer together, making it 

simpler for rain splashes to disperse spores and altering 

the pathogen’s life cycle (Ponomarenko et al., 2011; Eyal, 

1987). In dense plant population, the microclimate, such 

as high moisture, was always present, providing a 

favorable setting for the disease. It is possible that the 

higher plant density leads to a more suitable 

microclimate within the leaf canopy, which promotes 

ZTB development (Ansar et al., 2010). 

Many researches on the impact of environmental 

conditions on Z. tritici have found that temperature 

fluctuations play the most crucial function. The Z. tritici 

body temperature is the wheat leaf temperature that 

develops into plant leaves, influencing their life cycle 

significantly (Pietravalle et al., 2003; Gladders et al., 

2001; Lovell et al., 2004). Aside from temperature, moist 

leaf surface plays a significant role in early infections, 

necessitating a total of 10 mm of rain during three 

consecutive rainy days with at least 1 mm of rain 

(Pietravalle et al., 2003). 

The severity of ZTB reduced as the frequency of plowing 

increased, and similar trend was seen with Z. tritici 

(Bailey et al., 2001; Fernandez et al., 2016; Bankina et al., 

2014). The effects of soil tillage on ZTB have been 

researched in a variety of locations. The severity of ZTB 

was higher in plowed plots under conventional tillage 

(Gilbert and Woods, 2001; Bürger et al., 2012; 

Fernandez et al., 2016) than in alternative tillage 

systems, notwithstanding the contradicting results. 

Increased soil tillage is utilized for a variety of reasons 

during crop cultivation, including exposing inoculum to 

sunlight and removing inoculum sources from the soil. 

As a result, reducing the amount of inoculums in the soil 

may hinder the ZTB life cycle (Fernandez et al., 2016; 

Mergoum et al., 2007). As the frequency of plowing 

increased, the incidence of ZTB reduced once more. 

Rotation to non-hosts and agricultural debris sanitation 

achieved by deep plowing can reduce the quantity of 

inoculums available to start a new ZTB life cycle. Due to 

the long-distance spread of ascospores, this may be less 

effective in the field, but it may be beneficial if used 

within a region (Ponomarenko et al., 2011). 

Some research have found a low incidence of  ZTB under 

zero tillage or conservation tillage, but this outcome 

varied (Gilbert and Woods, 2001). The incidence of tan 

spot and powdery mildew is reduced as the plowing 

frequency is raised in farmer's fields, but the incidence 

of ZTB is increased (Krupinsky et al., 2007). 

Conservation tillage is encouraging the over-summering 

of Z. tritici, according to (Mergoum et al., 2007). 

Throughout the survey effort, the majority of the 

district's wheat growth stages were at the dough stage. 

Although the crop had reached full maturity in certain 

districts, particularly in the midlands. The severity of 

ZTB was influenced by the variation in growth stages. 

Because of senescence, the positive association shows 

that as the crop stage progressed, the severity of the ZTB 

increased as well. The reason for this is because as the 

crop matures, it loses its physical and chemical defenses, 

allowing the disease to easily penetrate and develop on 

the crop (Agrios, 2012). 

The different reports showed that the increment of 

altitude in meter negatively correlated with wheat stem 

rust (Hirpa, 2018) but from our study, the ZTB intensity 

is not correlated with altitude in the surveyed areas. 

We measured disease severity and concluded that when 

plowing frequency increased, disease incidence 

decreased by 11.84%. As weed infection levels 

increased, disease severity increased by 9.73%. 

Conversely, as plowing frequency increased, disease 

severity decreased by 10.42%. Other effects included an 

increase in disease severity of 3.19% as crop growth 

stages progressed from flowering to maturity. 

Zymoseptoria tritici pycnidiospore differed from 

Parastgnospora nodurum pycnidiospore, which were 

thick, had less than three septations, and had an erect 

morphology. The germinated spores of the Septoria 

tritici isolates had the different number of septations, 

shape, and thickness from Parastgnospora  nodurum 

isolates (Eyal, 1987). 

On a solid PDA media, the colony morphology of 44 

isolates revealed a wide range of textures, growth 

patterns, and colors (Figure 5). The whitish color 

isolates were discovered in the current experiments and 

had never been reported before (HARRAT and 

BOUZNAD, 2018). 

EtAm-14 and EtA-4 had the pinkish color similar to Bale 

Zone and EtA-3, EtA-8, and EtSh-1 also had the black 
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color similar to the West Shoa zone. This indicates that 

location may not affect the outcome of colonies of 

various colors resulting from isolates plated on PDA 

media, meaning that isolates collected from different 

locations and plated on PDA media could have the same 

or various colors, or isolates from the same location had 

different colors and from the same causative agent (Saidi 

et al., 2012). When Z. tritici isolates were plated on PDA 

growth media, they showed morphological differences. 

 

CONCLUSION 

The Z. tritici disease was prevalent in the most of the wheat 

production areas and it intensity also very high in most of 

the areas where wheat production is known such as Bale, 

Arsi and west arsi Ethiopia. Furthermore Z. tritici has a 

wide range of colony shape, which is new to our country. 

The morphologic heterogeneity of wheat Z. tritici isolates in 

Ethiopia was validated by the current finding. 

Because wheat Z. tritici is extremely common and severe 

in all of Ethiopia's central-southeast regions, and wheat 

is the country's most important crop, focusing on 

building an effective ZTB management strategy is 

crucial. 
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