Screening of the Bacterial Pathogens in Biofloc Technology based Aquaculture of the Ctenopharyngodon idella

Sumaira Aslam, Maira Mustafa, Komal Tayyab, Afshan Syed Abbas, Sheeba Batool


Great economic losses in fish aquaculture occur under the unhygienic conditions of the fishponds due to bacterial pathogens. Currently, Biofloc Technology (BFT) has proved successful in wastewater management as well as in controlling pathogenic loads. Since this technology has greatly supported marine fish, very scarce information is available for its successful implementation in freshwater fisheries. Furthermore, the pathogens specific to the carp cultures under the BFT system have not been studied yet. The unique attempt has been carried out in the Microbiology Lab of the Zoology Department of GC Women University, Faisalabad, Pakistan to screen bacterial pathogens in grass carp Ctenopharyngodon idella culture based on BFT utilizing agro-industrial wastes as a carbon source. The study confirmed the presence of bacterial isolates belonging to three genera namely Bacillus, Klebsiella, and Staphylococcus in water samples from three treatment groups. Bacillus species dominated over the pathogenic species i.e., Klebsiella and Staphylococcus in all treatment groups and is speculated to inhibit the harmful effects of Klebsiella and Staphylococcus species on the carp fish. This study is very important for the future designing of BFT based culture for freshwater fishes.


Biofloc technology; Pathogenic load; Carp culture; Ctenopharyngodon idella; Probiotic; Bacillus; Klebsiella; Staphylococcus.

Full Text:



Al-Faragi, J. K and Alsaphar, S. A. 2012. Isolation and identification of Bacillus subtilus as (probiotic) from intestinal microflora of common carp Cyprinus carpio L. In Proceeding of the Eleventh Veterinary Scientific Conference, 355: 361.

Bakar, N. S. A., Nasir, N. M., Lanan, F., Hamid, S. H. A., Lam, S. S. and Jusoh, A., 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish Clarias gariepinus utilizing biofloc technology. Int. Biodeter. & Biodegar., 102: 100-106.

Benson, H. J. 1994. Microbial application, laboratory manual in general microbiology. Brown Publishers, USA.

Bootsma, R., Fijan, N. and Blommaert, J., 1977. Isolation and preliminary identification of the causative agent of Carp erythrodermatitis. Veter. Arhiv., 47: 291-302.

Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W. and Bossier, P., 2008. Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. Multidiscip.J. of Microb. Ecol., 2: 19-26.

Defoirdt, T., Sorgeloos, P. and Bossier, P. 2011. Altbernatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol., 14: 251-258.

Ekasari, J., Rivandi, D. R. Firdausi, A. P., Surawidjaja, E. H., Zairin, M., Bossier, P. and Schryver, P. De. 2015. Biofloc technology positively effects Nile tilapia Oreochromis niloticus larvae performance. Aquac., 441: 72-77.

Dias, R. S., dos Santos, D. N., Fernandes, T. M. G. and Ferreira, J. G. G. 2012. "Infecção hospitalar–IH–causas múltiplas e fatores de risco associados a microrganismos de veiculação hídrica. Rev. Tec., 1, 54-60.

Dong, Y. H., Wang, L. H. and Zhang, L. H. 2007. Quorum-quenching microbial infections: mechanisms and implications. Philos. Trans. R. Soc. B: Biol. Sci., 362: 1201-1211.

Ekasari, J., Azhar, M. H. Surawidjaja, E. H. Nuryati, S., Schryver, P. D. and Bossier, P. 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish shellfish immunol., 41: 332-339.

Gutierrez, S. M., Dosta, M. D. C. M., Partida, A. H., Mejia, J. C. and De Oca, G. A. M. 2016. Effect of two carbon sources in microbial abundance in a biofloc culture system with Oreochromis niloticus. Int. J.Fish and Aquat. Stud., 4: 421-427.

Herrero, M. H., M. Saques, H. Gerez, and P. Ventura. 2003.Halototolerant and halophilic bacteria isolated during the ripening of salted products. J. Food Prot., 61:318- 323.

Kumar, R., Swaminathan, T. R., Kumar, R. G., Dharmaratnam, A., Basheer, V. S. and Jena, J. K. 2015. Mass mortality in ornamental fish, Cyprinus carpio koi caused by a bacterial pathogen, Proteus hauseri. Acta trop., 149: 128-134.

Li, W., Zhang, X., Song, W., Deng, B., Liang, Q., Fu, L., Zheng, J., Wang, Y. and Yu, D. 2012. Effect of Bacillus preparations on immunity and antioxidant activities in grass carp (Ctenopharyngodon idella). Fish Physiol. and Biochem., 38: 1585-1592.

Martinsa, G. B., Taroucob, F., Rosab, C. E. and R.B. Robaldoa. 2016. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative series of Nile tilapia Oreochromis niloticus. Aquac., 468: 10-17.

Manan, H., Moh, J. H. Z., Kasan, N. A., Suratman, S. and M. Ikhwanuddin. 2016. Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl. Water Sci., 6:1-10.

Rivera, D. A., Davo, A. P., Escalante, K., Chevez, C. and G. Gaxiola, C. , 2014. Probiotic effect of floc on vibrios in the pacific white shrimp Litopenaeus vannamei. Aquac., 424-425: 215-219.

Seidler, R. J., Talbot. H. W. J. R and Morrow, J. E. 1978. Isolation of Klebsielleae from within living wood. Appl. Environ. Microbiol, 36: 178-85.

Sudheesh, P. S., Ghabshi, A. A., Mazrooei, N. A. and Habsi, S. A. 2012. Comparative Pathogenomics of Bacteria Causing Infectious Diseases in Fish. Int. J. Evol. Biol., 2012: 1-16.

Tavakoli, H. R., Samadi, M. and Meshki, M. A. 2008. Study of bacterial pathogens, Staphylococcus aureus, Vibrio parahaemolyticus and Escherichia coli, in fresh and smoked cultivated fish in Iran. World aquac., 39(1):13-72.

Tilia, B. M., Sonnenschein, E. V. and Gram, L., 2016. Monitoring and managing microbes in aquaculture towards a sustainable industry. Microb. Biotech., 9: 576-584.



  • There are currently no refbacks.

Copyright (c) 2022 Sumaira Aslam

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Zoo Biology
ISSN: 2706-9761 (Online), 2706-9753 (Print)
© EScience Press. All Rights Reserved.