ROOT WATER-UPTAKE AND PLANT GROWTH IN TWO SYNTHETIC HEXAPLOID WHEAT GENOTYPES GROWN IN SALINE SOIL UNDER CONTROLLED WATER-DEFICIT STRESS
Abstract
Keywords
References
Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 112: 119–123.
Colmer, T. D., T. J. Flowers and R. Munns. 2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57: 1059–1078.
Condon, A. G., R. A. Richards, G. J. Rebetzke and G. D. Farquhar. 2002. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42: 122–131.
De Oliveira, A. B., N. L. M. Alencar and E. Gomes-Filho. 2013. Comparison between the water and salt stress effects on plant growth and development. In “Responses of Organisms to Water Stress”, Akıncı, S. (ed.), InTech, Rijeka, Croatia, pp. 67–94.
Dreccer, M. F., F. C. Ogbonnaya and M. G. Borgognone. 2004. Sodium exclusion in primary synthetic wheats. In “Proc. of 54th Australian Cereal Chemistry Congress and 11th Wheat Breed Assembly”, Black, C. K., J. F. Panozzo and G. J. Rebetzke (eds.), Royal Australian Chemical Institute Cereal Chemistry Division, Melbourne, Australia, pp. 118–121.
Dubcovsky, J., G. Santa-Maria, E. Epstein, M-C. Luo and J. Dvořák. 1996. Mapping of the K/Na discrimination locus Kna1 in wheat. Theor. Appl. Genet. 92: 448–454.
Farooq, S., M. L. K. Niazi, N. Iqbal and T.M. Shah. 1989. Salt tolerance potential of wild resources of tribe Triticeae – II. Screening of species of the genus Aegilops. Plant Soil 119: 255–260.
Feldman, M. 2001. Origin of cultivated wheat. In “The world wheat book: A history of wheat breeding”, Bonjean, A. P., and W. J. Angus (eds.), Lavoisier Publishing, Paris, France, pp. 3–53.
Gorham, J. 1990. Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41: 623–627.
Gorham, J., C. Hardy, R. G. Wyn Jones, L. R. Joppa and C. N. Law. 1987. Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74: 584–588.
Gowing, J. W., D. A. Rose and H. Ghamarnia. 2009. The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater. Agr. Water Manage. 96: 517–524.
Grewal, H. S. 2010. Response of wheat to subsoil salinity and temporary water stress at different stages of the reproductive phase. Plant Soil 330: 103–113.
Iehisa, J. C. M. and S. Takumi. 2012. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Genes Genet. Syst. 87: 9–18.
Inagaki, M. N., B. Humeid, S. Tawkaz and A. Amri. 2014. Some constraints on interspecific crossing of durum wheat with Aegilops tauschii accessions screened under water-deficit stress. J. Plant Breed. Genet. 2: 7–14.
Kubo, K., I. Elouafi, N. Watanabe, M. M. Nachit, M. N. Inagaki, K. Iwama and Y. Jitsuyama. 2007. Quantitative trait loci for soil-penetrating ability of roots in durum wheat. Plant Breed. 126: 375–378.
Mori, M. and M. N. Inagaki. 2012. Root development and water-uptake under water deficit stress in drought-adaptive wheat genotypes. Cereal Res. Commun. 40: 44–52.
Munns, R. and R. A. James. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253: 201–218.
Munns, R., R. A. James and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57: 1025–1043.
Munns, R., D. P. Schachtman and A. G. Condon. 1995. The significance of a two-phase growth response to salinity in wheat and barley. Aust. J. Plant Physiol. 22: 561–569.
Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.
Nevo, E. and G. Chen. 2010. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33: 670–685.
Ogbonnaya, F. C., O. Abdalla, A. Mujeeb-Kazi, A. G. Kazi, S. S. Xu, N. Gosman, E. S. Lagudah, D. Bonnett, M. E. Sorrells and H. Tsujimoto. 2013. Synthetic hexaploids: Harnessing speciesof the primary gene pool for wheat improvement. Plant Breed. Rev. 37: 35–122.
Passioura, J. B. 1977. Grain yield, harvest index, and water use of wheat. J. Aust. Inst. Agric. Sci. 43: 117–120.
Reynolds, M., F. Dreccer and R. Trethowan. 2007. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot. 58: 177–186.
Schachtman, D. P., E. S. Lagudah and R. Munns. 1992. The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theor. Appl. Genet. 84: 714–719.
Siddique, K. H. M., D. Tennant, M. W. Perry and R. K. Belford. 1990. Water use and water-use efficiency of old and modern wheat cultivars in a Mediterranean-type environment. Aust. J. Agr. Res. 41: 431–447.
Sohail, Q., T. Inoue, H. Tanaka, A. Elsadig Eltayeb, Y. Matsuoka and H. Tsujimoto. 2011. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed. Sci. 61: 347–357.
Thomas, R. J. 2008. Opportunities to reduce the vulnerability of dryland farmers in Central and West Asia and North Africa to climate change. Agr. Ecosyst. Environ. 126: 36–45.
Trethowan, R. and M. van Ginkel. 2009. Synthetic wheat – an emerging genetic resource. In “Wheat: Science and Trade”, Carver, B. F. (ed.), Wiley-Blackwell, Ames, IA, USA, pp. 369–385.
Valkoun, J. J. 2001. Wheat pre-breeding using wild progenitors. Euphytica 119: 17–23.
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Masanori Inagaki, Ramzi Chaabane, Abdallah Bari
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal of Plant Breeding and Genetics
ISSN: 2305-297X (Online), 2308-121X (Print)
© EScience Press. All Rights Reserved.