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A B S T R A C T 

CIMMYT, with national programs, conducts selection of stress-tolerant genotypes under managed stress conditions; 
this investigation is expected to add information to the existing knowledge. Data sets used in this study comes from 
Intermediate to Late Hybrid Trails (ILHT) conducted in five Eastern and Central Africa (ECA) countries from 2008 to 
2011. Trials, ranging from 18 in 2009 to 29 in 2010 were used. Trials are categorized into four management systems 
and two yield levels. Variance Components, broad sense heritability (H), Site Regression (SREG), Genotypic 
Regression (GREG), Completely Multiplicative Model (COMM) and Factor Analytic (FA) models were fitted. Results are 
discussed and compared with those stated in literature. We argue that it is preferable to first fit the fixed effect models 
before proceeding to the mixed effect model, as the former shows the level of complexity of the GE component and 
number of Axis required to explain it. The fixed effect model, SREG2, is preferable for trails targeting to compare 
hybrids with checks. From the GGE biplots it was noted that the first two PC did not account for sufficient percentage 
of variation for all years which witnessed complexity in the GE component for this data. Nevertheless, since PC1 
accounted for large percentage of variation than PC2, the plot still gives some idea of which hybrids are favored and 
where. Most importantly, location of genotypes along PC1 can serve for judging yielding potential of the genotypes to 
guide in selection decision. Equivalence between Finlay – Wilkinson and GREG was established. The few 
environmental covariables obtained for 2009 was used to fit Partial Least Square (PLS) regression. The result 
indicated complexity in the GE component, as PLS latent factors accounted for small percentage of variation. It was 
recommended to use information from SREG2, GREG2 and FA(1) models in order to identify stable genotype. 

Keywords: AMMI, Biplot, Factor Analytic Model, GREG, Mixed effect model, SREG, Stability.  

 

INTRODUCTION 

Maize grain yield is reported as being considerably 

reduced under drought and low-N conditions (Bänziger 

et al., 2006). Developing hybrids effectively requires a 

genotype testing network that cover the target region 

adequately, achieves a high level of precision and 

repeatability in estimating genotypic means. National 

programs with support of CIMMYT lines serve a large 

number of farmers over a wide area and are exposed to 

both technical and financial constraints. It is thus 

important to stick to appropriate subdivision of a 

breeding target region and to setup strategy for 

selection of lines for such situations. CIMMYT GMP 

conducts selection of stress-tolerant genotypes 

indirectly under managed stress conditions, however the 

selection efficiency of this approach is not known and 

provision of additional information will help to 

understand the scenario better. Trails in Africa are 

conducted in two sub-regions, Eastern and Southern 

Africa; within each sub-region in different countries, at 

different locations and over years. However, in large and 

heterogeneous target regions such as Africa genotypes 

are expected to respond differently to variation in 

environmental factors such as temperature, soil fertility, 

and precipitation. Africa is divided into various agro-

ecology and is highly exposed to both optimal and stress 

conditions. The presence of GE in plant breeding 
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experiments is considered either as inconsistent 

responses of some genotypes to such environments due 

to genotypic rank change or as changes in the absolute 

differences between genotypes without rank change. In 

certain situations genotypic rank changes can be 

observed which may even lead to what is known as 

Cross over Interaction (COI) (Frankham et al., 2007; 

Lynch and Walsh, 1998, Cooper et al., 1996). This 

phenomenon, referred to as COI, introduces a degree of 

uncertainty into the measurement of overall genotype 

performance and thus complicates selection for broad 

adaptation (Basford and Cooper, 1998). A strategy to 

reduce or avoid GE interactions is to explore local 

adaptation by subdividing the plant breeding program. 

But, this may not always be a solution. It is rather 

important to understand the cause of GE in plant 

breeding and work towards disaggregating the GE, and 

adjusting parameters for the occurrence of GE because 

subdivision of a target region into more homogenous 

sub-regions will not always increase selection efficiency 

(Atlin et al., 2001, and Baker, R.J, 1988a). 

Several models are commonly used for describing the 

mean response of genotypes over environments and for 

studying and interpreting GE in agricultural experiments: 

linear models, bilinear models, and linear-bilinear models. 

The objective of this study is therefore to understand the 

pattern of variability and GE interaction under various 

management systems and yield levels to identify links 

between models that are used to disaggregate and 

interpret the GE interaction component. 

MATERIALS AND METHODS 

Number of trial sites used for the study varies from year 

to year (Table 1). Number of locations and trails in a given 

year may not always match, because more than one trail is 

planted in same location. Five Eastern and Central African 

countries: Ethiopian, Kenya, Tanzania, DR Congo and 

Uganda, were included in the Regional trail set. Locations 

are also associated with the different types of stress 

management systems. For example, Chirendzi (in 2009) 

and Kiboko (in 2008 and 2010) are considered ‘Managed 

Drought’ (MD), characterized by low yield. Similarly, 

Asfsf-Arusha (2008) and Bako (throughout) were used as 

‘Managed Low N’ (MLN). Majority of locations are 

however considered ‘Optimal’. Trails were set in four 

management systems: managed-stress, random stress 

and optimal conditions. Managed stress is set as managed 

drought and managed low N (Table 1). Some observations 

made on the pattern of occurrence of management type 

and trails are: 1) Maseno (trail 6), and Busia (trail 17) in 

Kenya are the only sites that were used as sole ‘Random 

Drought’ site in 2008 and Maseno was never repeated in 

subsequent years; 2) Elgon Downs (trail 3) were 

considered ‘Random Drought’ in 2009, but the same 

location were considered ‘Optimal’ in 2010 (trail 18) and 

2011 (trail 15); 3) Kakamega (trial 14) and Muguge (trial 

16), both in Kenya are, considered ‘Random Drought’ in 

2009, but the former was considered ‘Optimal’ in 

subsequent years (trail 32 in 2009; trails 22, 26 and 34 in 

2010; and trail 31 in 2011). In general, two trails for 2008, 

three in 2009, and one trail in 2011 are the only trails 

considered ‘Random Drought’. There was no trail site for 

‘Random Drought’ in 2010. Therefore, estimated 

parameters such as Least Square Means (LSM), Variance 

Components and H may not be precise for these 

management types due to low number of observations. 

A trail mean were computed within year and trails 

classified as being ‘high’ or ‘low’ yielder based on yield 

cut-off point of 3 t/h. Atlin et al. (2001) proposed this 

classification to serve as a basis for selection of target 

environments in breeding. Trail codes are consistent 

across locations within a given year but vary from year 

to year. About 51% of trails in 2008 are classified as low 

yielders, which is high compared to other years. 

Proportions of trails classified as high yielding are 67%, 

66% and 60% for 2009, 2010 and 2011 respectively. 

Thus there is sufficient number of trails to fit a model for 

yield level by year (Table1). 

Models which accounted for variations in trails, year, 

genotypes, and their interactions were fitted as: 

  )()()()( YGLGYGRLYBLYRYLYYLD  

Where Y=year, L=location, R=replication, B=incomplete 

block, G=genotype 

Different Trails may have been given the same code in 

different years, therefore trails are considered as nested 

within year in the specification of the models. This 

model fitted to all data provides overall variance 

components for Trail, Year, Genotype, their interactions 

and the error term. It thus shows the overall pattern of 

occurrence of variability, before trails are split into 

groups (by management type and yield level). The 

second approach was fitting the above model for Yield 

Levels (P) and Management Types (M). It is understood 

that trails under different management conditions depict 

different characteristics and estimating variance 

components, H and BLUPs by management type is 

commonly practiced among breeders. 
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Table 1.  Number of trails for a combination of year, management type and yield level.  Note that trails are given 

different codes per year. Therefore trail codes from two or more years may or may not coincide. 

 Year 

2008 2009 2010 2011 

Trials by Management Types 

Managed Drought 3 3 3 2 

Managed Low N 2 1 2 1 

Optimal 18 11 24 21 

Random drought 2 3 - 1 

Trails with H < 0.15 4 2 4 6 

Trials by yield group 

Low yield (< 3 t/ha) 12 6 10 10 

High Yield (> 3 t/ha) 13 12 19 15 

Total number of trials 25 18 29 25 
 

The yield level and management types would not be 

incorporated in the same model simultaneously since it 

over-fit the data. 

However, in models (1) and (2), ‘Management Type’ and 

‘Yield Level’ were included respectively to estimate 

overall contributions of each of them. This helps to 

determine whether there is sufficient variability among 

the management types (and yield levels) in order to 

consider them as legitimate groups where breeders may 

have to consider them as separate selection environment. 

)1.....(.)()()()()()(   YMGLMGYGMGRLYMBLYMRYMLMYMYLD  

)2....(............)()()()()()(   YPGLPGYGPGRLYPBLYPRYPLPYPYLD  

Where M=Management type, Y=year, L=location, 

R=replication, B=block, P=yield level 

Because of changes in the coverage of management type 

and yield level each year, interaction of year with these 

terms does not make sense. Therefore, year is 

considered to be nested within management type or 

within yield level. Similarly, since locations fall under the 

different management types, or yield level, location is 

considered to be nested under a combination of Y and M 

or Y and P. Nevertheless, these models may be over-

parameterized since they are additional factors imposed 

on the already designed experiment. The number of 

locations that fall under drought or low N conditions is 

very few compared to the optimal situation and this 

might introduce some bias in their comparison. Breeders 

are thus advised to plan setting experiments under this 

management situation to generate more replication. In 

the fixed model scenario, however, contrast can be set to 

test differences between these groups. Therefore, it is 

advisable to use model (1) and (2) and fit for each 

management type and yield level. 

Normally about 20-30% of the lines are expected to be 

carried over from one year to the next to form a basis for 

evaluation of new entries in a given year. However, 16 

lines were included in the trials for three consecutive 

years (2008 - 2010). Nevertheless, no line appeared 

consistently over the four year period (2008-2011). In 

addition, among lines tested in 2010, only four were 

repeated in 2011. 

Several statistical models and methods of analysis were 

developed for analysis of Multi-Environment Trials 

(MET) data over the years and a good review is 

presented in Smith et al. (2005). Crossa et al. (2009) 

described both fixed and mixed versions of most of these 

models and presented examples on their use. These 

models are originated from principles of Williams 

(1952) which has later been extended by Gollob (1968) 

and Mandel (1969, 1971) and they are all interrelated. 

Crossa et al. (2002) called these models families of 

linear-bilinear models and showed how families of these 

models are related. 

The General Linear-Bilinear Model (Yan et al., 2007 and 

Burguen˜ o et al., 2008) in matrix have the following 

form: 

  ∑        
    ∑    

              ------------------(3) 

Where,    is known constant,      is the vector of 

regression coefficients for the linear term. 

One form of fixed linear-bilinear models, a special case of 

(3), for non-replicated data may be stated as: 

        ∑    
              ---------------------(4) 

where E is environmental and G varietal main effects,   

is the singular value of the kth  multiplicative component,  
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     are kth left singular vector for ith genotype 

representing genotype sensitivity to hypothetical 

environmental factors represented by the kth right 

singular vector with elements of     .  According to 

Gauch (1988) and Gauch et al (2001), this model is 

known as AMMI. 

Three important variants of model (3) were also 

discussed in literature (example, Crossa et al., (2010). 

They are i) Site Regression (SREG), also known as GGE 

biplot, where Site main effect is separately estimated but 

Genotype main effect and GE interaction is combined; ii) 

Genotype Regression (GREG), where genotype main 

effect is separately estimated and environment main 

effect and GE is combined; iii) Completely Multiplicative 

Model (COMM), where no main effect is estimated 

separately. Cornelius and Seyedsadr (1997) expressed 

the above models in matrix form. Each of these models 

may be fitted as a fixed effect or mixed effects. Burgueno 

et al. (2008) and Crossa et al. (2010) discussed and 

described the two possibilities with their advantage and 

disadvantages. 

In the SREG model, the bilinear term fits the main effects 

of genotypes (G) plus the GE interaction, a composition 

of which is subjected to singular value decomposition 

and is different from what is being fitted in the AMMI 

(Crossa et al, 2009). In addition, SREG2 can be perceived 

as consisting of a set of multiple regression equations for 

each environment on genotypic regressor variables. 

A mixed-model analogue of AMMI and/or SREG has been 

developed using the Factor Analytic (FA) model for 

approximating the variance-covariance GE structure 

(Piepho 1998; Smith et al. 2002, 2005; Piepho and 

Mohring 2005; Cornelius et a, 1999). Crossa et al. (2006) 

and Burguen˜ o et al. (2008) described implementation 

of these models. Burgueno et al. (2008) described the 

equivalence between SREG2 and FA(2) for finding 

subsets of genotypes and environments without 

crossover interaction (COI). We envisage that similar 

development can also lead to the equivalence of GREG1 

and Finlay-Wilkinson models with FA(1). Since Finlay 

and Wilkinson (1963) are equivalent to SREG1with the 

role of genotype and environment interchanged (Yan 

and Tinker, 2005, 2006), it is straight forward to 

establish the fact that the fixed effect model GREG1 is 

equivalent to stability analysis models of the Finlay-

Wilkinson (1963) and the Eberhart - Russell (1966), 

with some re-parameterization. Following Burguen˜ o et 

al. (2008), in this re-parameterization, the first 

multiplicative term,        is considered as the genotype 

regressions with coefficients     on environmental 

indices   . The    parameter can be absorbed into      

or    , such that        =  [ ]         and        = 

           ., where f lies between 0 and 1. Although the 

Mixed model approach (FA models) are flexible and have 

several benefits (Crossa et al, 2010), often a maximum of 

FA(2) is fitted and the Eigen values are absorbed in the 

random variables. But the fixed effect approach provides 

a measure of how much each component contributed to 

the variation in the GE (or GGE) and helps decide how 

far the GE (or GGE) component is complex. We therefore 

argue that the fixed effect models are first fitted and 

observations made before proceeding to the FA models. 

Furthermore, Burguen˜ o et al. (2008) showed the 

equivalence between the FA(2) and SREG2 as a set of 

multiple regressions. They also argued that the 

interpretation of the loadings and scores of the FA(2) is 

the same as that obtained by the SREG2. Under factor 

rotation of the FA(2) to a principal component solution, 

Burguen˜ o et al. (2008) showed that the directions and 

projections of the vectors of FA(2) and SREG2 in the 

biplot are the same. Therefore, the same principle can be 

used to justify equivalence of GREG1 and FA(1), which is 

easier to demonstrate as we are dealing with one 

component only. In a situation where FA(1) is applied to 

‘E+GE’, the score of the first factor measures genotypic 

sensitivity to latent environmental variable. The 

difference between the fixed and mixed model approach 

is therefore that, the former is based on observed 

environmental variable, which is average of all 

genotypes per site, while the later uses latent 

(unobservable) environmental variable. Proportion of 

variation GREG1 is accounted for is an indicator of how 

much of the ‘E+GE’ variation can be explained by a linear 

term. It is therefore important to first fit GREG1 and 

observe PC1 before proceeding to fit the FA(1) model for 

stability analysis. 

Incorporating external environmental covariables 

helps to explain genotype by environmental interaction 

(GE). Multivariate Partial Least Square (PLS) 

Regression model is one such useful type of models 

(Vargas et al., 1999; Crossa et al., 2010). It generalizes 

and combines features from principal component 

analysis (PCA) and multiple regression. Following 

Crossa et al., when genotypic response over 

environment (Y) is modeled using environmental 

covariables, the  x  matrix Z of H (h=1, 2 ,3…., H) 
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environmental covariables can be stated in bilinear 

form as follows:  

                               ----(5) 

where the   matrix contains the  j     vectors which are 

latent environmental covariables (known as Z-score, 

indexed by environments), and the   matrix contains the 

 1.... h     Z-loading vectors (indexed by 

environmental covariables) and   has the residual. 

Similarly, the response variable matrix   in bilinear of 

the form: 

                                 ---(6) 

Where the   matrix contains the  1…. h     vector 

called Y-loading (indexed by genotype) and   has 

residual. The relationship between   and   is 

transmitted through the latent variable . The PLS 

performs simultaneous but separate principal 

component analysis of   and . 

Interpretation of AMMI2 and SREG2 are similar. The 

interpretation is based on genotypic and environmental 

vectors drawn from the origin (0, 0) to the end points of 

the location of scores (Gower and Hand, 1996). They 

explained that an angle of less than 90° or larger than 

270° between the two vectors is an indicator of positive 

genotype positive response at that environment, a 

negative response if the angle is between 90° and 270°. 

Phenotypic correlation of environments or genotypes 

can also be approximated using cosine of the angle 

between the two, an angle of zero, 90° (or –90°) and 

180° indicating a correlation of +1, 0, and –1, 

respectively. 

In this paper, we fit different models and explore their 

relationship in the analysis and interpretation of MET 

data. Practical importance of some of the models 

emphasized and selectively fitted to the data. 

RESULTS AND DISCUSSION 

Variance Components after excluding local checks and 

locations for which H<=0.15 were obtained for the various 

classifications (Tables 2-6). Different checks are used in 

different sites, and are known locally only and cannot be 

included in the model. The Variance Component (VC) and H 

are generated for two time periods, 2008-2010 and 2008-

2011 (Tables 3-5). That is because 16 entries appeared in all 

the three years and thought that it would be reasonable to 

compare the two time periods. In addition, the VC and H are 

estimated for management and yield level. Management and 

yield level were also combined to produce categories with 

reasonably large number of sites so that convergence is 

attained during model fitting using REML. 

Table 2. Variance Components and H of Grain yield for a 
model that includes management type or Yield level, for 
2008-2010 Eastern and Central Africa ILHT regional 
trails. Keys are: T=management or yield level, Y=year, 
L=location, R=replication, B=block, G=genotype, 
H=broad sense heritability. In the source of variation 
column, T stands for either management type or yield 
level factors. For example, variance component (T) for 
management type is 1.38, while for Yield level it is 5.54. 

Source of variation Management Type Yield level 

T 1.38 5.54 

Y(T) 0.17 0.06 

L(YT) 3.38 1.64 

R(TYL) 0.18 0.18 

B(TYLR) 0.13 0.13 

G 0.10 0.11 

GT 0.00 0.01 

GY(T) 0.08 0.08 

GL(YT) 0.21 0.20 

Residual 0.81 0.81 

H 0.72 0.75 

In assessing H we found that, 48%, 50%, 34% and 44% 

of the trails in 2008, 2009, 2010 and 2011 respectively 

recorded H > 0.50. Trails in 2009 generally recorded 

better performance as 78% of them have H>0.40, 

compared to the remaining years where this percentage 

is 45 for 2010 and 48 for 2008 and 2011. Trails in 2010 

recorded relatively low H probably due to their large 

size (as number of trails is the maximum in 2010). Five 

sites in 2008 (15, 24, 25, 34 and 40), three in 2009 (9, 

12, 35) and two sites in 2010 (22, 26) has recorded 

highest H (> 0.70). All these sites are optimal sites. 

Except for ‘MLN, >3 t/ha’ and ‘RD, >3 t/ha’ trail 

categories, GxE variance component (L*G(Y)) is higher 

than Genotypic Variance in all other categories, 

indicating the fact that genetic variability is masked by 

higher GxE interaction. From Statistical marginality 

condition, interpretation of the main effects may not be 

feasible if the interaction term is significant. Therefore, it 

is important to account for GxE term when estimating 

parameters. Most of these categories are associated with 

low yield situation and indicates potential for selection 

under stressed circumstances. 

Variance Component for Management types (Tables 3 & 

4) is high indicating presence of considerable variation 

in this category which provides an opportunity of 

breeding for the different management system. The 

details of parameter estimates are given in Table 3 for 

2008-2010 and in Table 4 for 2008-2011 data sets.
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 Table3. Variance Components, after excluding local checks and locations with H<=0.15, by management for Grain 

Yield, 2008-2010 Eastern and Central Africa ILHT regional Trail. 

 Optimal Managed low N Managed Drought Random Drought 

Y 0.20 0.00 0.4133 2.5768 

L(Y) 3.93 1.00 1.0967 0.3763 

R(YL) 0.14 0.29 0.3870 0.1059 

B(YLR) 0.09 0.14 0.2926 0.3141 

G 0.11 0.00 0.1146 0.0274 

YG 0.13 0.08 0.0435 0.00 

GL(Y) 0.23 0.13 0.0786 0.2028 

Residual 0.93 0.27 0.5127 0.4872 

H 0.70 0.0 0.841 0.812 

Table 4.  Variance Components, after excluding local checks and locations with H<=0.15, by management for Grain 

Yield, 2008-2011 Eastern and Central Africa Regional variety trail. 

 Optimal Managed low N Managed Drought Random Drought 

Y 0.03 0.00 0.00 0.86 

L(Y) 3.52 0.78 0.41 0.61 

R(YL) 0.12 0.23 0.28 0.10 

B(YLR) 0.12 0.17 0.26 0.30 

G 0.15 0.00 0.11 0.02 

YG 0.13 0.12 0.001 0.00 

GL(Y) 0.28 0.10 0.10 0.17 

Residual 0.86 0.39 0.45 0.45 

Trail 36 6 7 6 

H 0.80 0.00 0.90 0.47 

For combined analysis of 2008-2010 and 2008-2011 

data, H for ‘Managed Drought’ remained high indicating 

possibility of selection for stressed environment (Table 

3 & 4). For the 2008-2011 data H for ‘Random Drought’ 

is reduced to 0.47. There is only one such trail in 2011 

and may have contributed in reversing the result. On the 

other hand, H for ‘Optimal’ and ‘Managed Drought’ has 

substantially increased. This may be due to the fact that 

majority of the hybrids in the 2011 trail are new entries 

and exhibited better heritability (Table 4). For Yield 

level categories, there is considerable improvement in H 

for the data of 2008-2011 over that of 2008-2010. 

Particularly, H for ‘Low yield’ category increased from 

0.53 to 0.72 (Tables 5 ). From analysis of the 2008-2010 

data by management and year combination, H showed 

considerable reduction for all categories. ‘Managed 

Drought’ in 2010 has the lowest H (0.02) which indicates 

that the previous high H for analysis of all years must 

have been contributed from 2008 and 2009 data sets. 

To avoid low number of sites for ‘Managed Drought’ 

management types were re-categorized with yield level 

as ‘Managed Drought + MLN’, ‘Random Drought’, 

‘Optimal > 3 t/ha’ and ‘Optimal < 3 t/ha’. ‘Managed 

Drought’ and ‘Low N’ are merged to increase 

replications. Variance components and H for these 

categories are given in Table 6. It is now evident that 

high yielding trails in the ‘Optimal’ category are 

repeatable, as those in low yielding category registered 

H of about 0.08. The ‘Managed Drought + MLN’ category, 

although slightly reduced, still have high H but this is 

purely attributed to ‘Managed Drought’ trails alone. 

Therefore, it is better to isolate ‘Random Drought’ and 

‘Managed Low N’ in future analysis as they are not 

repeatable possibly for reasons of low number of trails. 

Results from phenotypic and genotypic correlations 

(Table not presented for brevity) shows that ‘Managed 

Low N’ in 2009 is relatively poorly associated with all 

other categories. Particularly it has the lowest 

correlation (r=0.43) with ‘Optimal’ in 2008. In contrary, 

‘Managed Low N’ in 2008 has relatively stronger 

association with the other categories. There is very 

strong correlation between ‘Optimal’ and ‘Managed 

Drought’ regardless of year of experiment. ‘Managed 

Low N’ in 2008 has strong correlation with ‘Managed 
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Drought’ regardless of trail year showing validity of 

combining the two to overcome shortage of replication. 

‘Random Drought’ seems to correlate better with 

‘Managed Drought’ than ‘optimal’. The genetic 

correlation identified the relatively low correlation 

between ‘Managed Low N’ and ‘Optimal’ in 2010 only.

Table 5. Variance Components and H for High and Low yield levels after locations with H<=0.15 are removed (Grain 
Yield), for Eastern and Central Africa ILHT regional variety trail for two time periods, 2008 – 2010, and 2008-2011. 

 2008 - 2010  2008 - 2011 

Source of variation High Low  High Low 

Y 0.11 0.04  0.02 0.06 

L(Y) 2.50 0.25  2.16 0.32 

R(YL)  0.20 0.14  0.16 0.12 

B(YLR) 0.10 0.18  0.13 0.19 

G 0.17 0.02  0.22 0.03 

GY 0.14 0.04  0.15 0.03 

GL(Y) 0.24 0.13  0.29 0.13 

Residual 1.11 0.36  1.00 0.35 

H 0.76 0.53  0.84 0.72 
 

BLUPs for 2008-2011 trail data by Yield level are 

computed (but not presented for brevity). The result 

shows that predicted yield for ‘high’ category is in the 

order of 5 to 6 t/ha. But two hybrids from 2011 trail, 

HYTECH11 and HYTECH20, recorded lowest predicted 

mean. Predicted mean in the ‘Low’ yield category is in 

the order of 2 t/ha, but few hybrids such as CKH08008, 

CKH08002, and CKH08053 has lowest predicted mean 

and may not have sufficient potential for future 

candidacy. 

As indicated earlier, this data has come from regional 

variety trails where hybrids are compared with checks 

and breeding gains are evaluated, therefore we felt that 

the fixed version of SREG is more appropriate (since we 

are not interested in prediction) to fit (Gauch 2006; Yang 

et al. 2009) despite current controversies as to whether 

Factor Analytic model or Fixed SREG is more appropriate. 

Examination of ANOVA table shows that percentage 

contribution of environmental variation, out of overall 

variability in the yield, is generally large. This ranges 

from 40% in 2009 to 69% in 2008. These values are 

57% and 67% respectively in 2010 and 2011. 

Contribution of Genotype variation is 2%, 2%, 3% and 

3.7% in 2008, 2009, 2010 and 2011 respectively. 

Proportion of GE (out of all variability in yield) is 8%, 

7%, 10% and 14% for 2008, 2009, 2010 and 2011 

respectively. Yan, et al 2001, by analyzing Ontario 

Winter wheat found similar results, except that in their 

case genotype contribution ranged from 1.8% to 28.5%. 

About 48% of variation in yield in 2009 is designated as 

random error, while this value is only 12% in 2011. This 

shows that there is some systematic variation operating 

in the data which could not be accounted for in 2009 but 

the trials are well managed in 2011. 

Table 6. Variance Components, after excluding local checks and locations with H<=0.15, by a combination of 
Management Type and Yield Level for Grain Yield, 2008-2011 Eastern Africa Regional variety trail.  The columns 
are ‘Optimal’ management and yield > 3 t/ha, ‘Optimal’ management and yield < 3 t/ha, ‘MD+LN’ stands for a 
combination of Managed drought and managed Low N. 

 Optimal > 3 t/ha Optimal< 3 t/ha MD + LN Random Drought 

Y 0.00 0.07 0.00 0.86 

L(Y) 2.15 0.12 0.51 0.61 

R(YL) 0.14 0.03 0.26 0.10 

B(YLR) 0.13 0.08 0.22 0.30 

G 0.21 0.00 0.06 0.02 

YG 0.15 0.06 0.00 0.00 

GL(Y) 0.30  0.11 0.16 0.17 

Residual 1.01 0.25 0.44 0.45 

Number of Trails 32 10 13 6 

H 0.83 0.08 0.89 0.47 
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We argue that fitting SREG, (sometimes including GREG 

or COMM) is more important and statistically 

meaningful than AMMI. This is because in statistical 

marginality theory of effects, main effects cannot be 

interpreted independently if the interaction term is 

significant. In the analysis of MET data, the GE term is 

often highly significant with GE sum of square being 

much higher than that of G. Therefore, combining the G 

and GE effects and subjecting to SVD or FA model is 

appropriate. However, in a situation where the 

significance probability for the main effects (E and G) is 

much smaller than that for GE, then AMMI model might 

be more appropriate to fit. Consequently, the result 

shows that proportion of variation accountable by GGE 

(out of the total, E+G+GE, variation) increased from 

12.7% in 2008 to 21% in 2011, 2009 and 2010 being 

about 8.9 % each (Figures 1-2). In other words, in 2008, 

3.6% of the total variability (E+G+GE) is accounted for 

by PCA1 (and about 5.5% accounted for by the first two 

PCAs). In 2011 PCA1 accounted for about 9.9% (about 

45% of G+GE variation) of the total variation, while 

12.2% of the total variation is accounted for by the first 

two PCAs. Therefore, more component of the G+GE 

variation is explained by the new axis in 2011 than in 

2008, hence the biplot is more informative for 2011 

data. Based on arguments set out by Yang et al. 2001, the 

G+GE component in all the three years is important (as 

all contributed > 10% of E+G+GE variation), but the first 

two PCA did not account sufficiently for the G+GE 

variation in all years, the total contribution being 58% in 

2011 followed by 50% in 2010 and 2009. Contribution 

of the first two PCA is low in 2008 (less than 50%) and 

may not be important in selection or delineation of 

mega-environment.

 
 
Figure 1. Site Regression (SREG2) Biplot of the first two PCA for ILHT Eastern Africa regional trial 2009 data. A 
polygon is imposed on the biplot by joining the outer genotypes (vertex genotypes) and drawing straight line from the 
origin perpendicular to the lines.   
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To be able to obtain > 65% contribution, one may have 

to consider up to 5 PCA axes, which is not useful for valid 

interpretation. But, a peculiar phenomenon in 2010 and 

2011 is that the first PCA alone accounted for > 40% of 

variation in the G+GE, which may be useful to measure 

potential of the genotypes in these years. When this 

result is compared with AMMI2 model, the contribution 

of the axes considerably decreased, particularly, the 

2010 data set showed huge reduction. This shows that 

the GE component is indeed complex and cannot easily 

be disaggregated and interpreted. However, since the 

first PCA is highly loaded for 2010 and 2011, some 

general remarks may be made. First it would be good to 

see consistency of the plot over the years. 

 
 

Figure 2. Site Regression (SREG2) Biplot of the first two PCA for ILHT Eastern Africa regional trial 2011 data. A 

polygon is imposed on the biplot by joining the outer genotypes (vertex genotypes) and drawing straight line from the 

origin perpendicular to the lines. 

It is apparent that the environment has mostly positive 

on the first PCA, apart from changing position of the 

locations from year to year. By drawing an imaginary 

polygon that connects corner genotypes so that all other 

genotypes fell inside the polygon, and then drawing 

straight line from the origin of the biplot to each side of 

the polygon, it is possible to identify ‘what - wins –

where’(Yan et al, 2000, 2001). Results for 2009 and 

2011 are presented in Figures.1 and 2 respectively. 

Consequently in 2009, the vertex genotypes particularly 

located on positive side of PCA1 are wining genotypes in 

a given environment. Genotype 10 is the wining 

genotypes at Kakamega. Genotype 11 wins at Embu 

which is close to its side of the line. Genotype 18 without 

a site in its sector is not the highest yielding in any 

environment. Genotype 25 is a winner in Kiboko 

although this site is not in its sector. Such 

inconsistencies may have occurred due to the fact that 
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the first two PCAs have not accounted for sufficient 

proportion of variation in ‘G+GE’. Genotype G37, a check 

known as WH403 has very low PCA1 and is lowest 

yielder in most sites in this year and seem non-

adaptable, while the other two checks (G38-WH505 and 

G39-H513) are located close to the origin, although may 

not be adaptable to any of the sites, which contradict the 

expectation that checks are varieties already adapted to 

the sites. G19 hybrid known as CKH08053 is also 

associated with low PCA1 and is low yielder throughout. 

This hybrid is located very close to G37 check and may 

perform similarly. On the other hand, G31 and G40 are 

low yielders at Kiboko, Asffs and SARI and are less 

adapted to these areas. But since the first two PCA are 

accountable for about 51% of the GGE variation, caution 

should be taken in interpreting the result. Bulinidi and 

Kakamega, the ‘Random Drought’ locations in 2008, are 

paired on the biplot and are associated with G10, G16 

and G23, which shows that the locations still 

demonstrate some similarity even in different years. 

Biplot for 2010 is different from other years in the sense 

that genotypes are distributed to the four quadrants 

proportionally. Genotypes G22, G24, G26, G15 are 

associated with small PCA1 and are low yielders which 

may not be adapted. The main interest here is to 

compare performance of the three checks, G39, G40 and 

G41, with the hybrids. The plot shows that all of them 

are located in different quadrants and seem to perform 

differently. For example, G39 which is low yielders is not 

well adapted to most of the environments, while G40 

seem to be adapted to Elgton. 

In 2011, the two checks, G38 and G39, are associated 

with low PCA1 and are very low yielders throughout. 

The reason for inclusion of these varieties in the trails 

should be examined. G37, another check variety is also 

low yielder and non-adaptable at any of these locations. 

The other three checks, G34 (H513), G35 (WH403) and 

G36 (WH505) which appeared in the regional trials 

consistently from 2008 to 2011, also have relatively 

small PCA here, like in 2009, but are close to the origin. 

All of them are also well adapted to two sites, Muguga 

and Maseno. The genotypes, G1, G26 and G28, which 

formed group on the plot, has small PCA1 and are lowest 

yielders at Elgton, Shik, Think, and Buli. Among the 

vertex Genotypes, those appearing isolated and stood 

clear from others, G12 and 40, are associated with sites 

where they won. Accordingly, G12 won in Shika (and 

thinka as well), while G40 won at Elgon. There is 

however no clear cut for a group of genotypes that 

appeared together around the vertex. This might be due 

to the fact that the Biplot did not have sufficient 

information since the variation accounted by GGE is not 

that large. 

To establish equivalence between GREG1, Finlay 

Wilkinson regression (1963) and FA(1) models, we 

present results from the ILHT data set. Results from 

GREG2 shows that PCA1 contributed 91%, 84%, 87% 

and 87% of the ‘E+GE’ variations in 2008, 2009, 2010 

and 2011 respectively. This result is in contrary with 

those obtained from SREG2, where PCA1 contributed in 

the range of 30% to 45%. Such differences might have 

occurred due to the fact that in GREG, ‘E+GE’, variation is 

highly dominated by variations in ‘E’, unlike variations in 

‘G’ which is small. Therefore, PCA1 mainly captured 

variations in ‘E’ as the ‘GE’ component is relatively small. 

This indicates that the Finlay – Wilkinson regression 

type would explain stability of these hybrids. We 

however choose to fit Eberhart and Russell Stability 

model (1966) within the mixed effect model framework 

to obtain the stability parameters using Factor Analytic 

model (Piepho et al, 1997, 1998a). Eberhart and Russell 

in their fixed effect approach advocate that a genotype 

with regression slope approaching unity and deviation 

variance approaching zero is more stable. The Factor 

Analytic model computes genotypic sensitivity 

parameter to the Latent environmental index. In the 

traditional Eberhart and Russell approach, genotype 

means are regressed on environmental means to obtain 

stability parameters. This approach has however been 

criticized since environmental means are calculated 

from genotype performance and do not provide an 

independent information for judging stability of 

genotypes. 

For stability study only ‘Optimal’ trials are included in 

the analysis since sites dedicated to ’ Managed Drought’, 

‘Random Drought’ and ‘Low N’ trials are very few and 

that these stressed environments would be under 

represented and the results biased. Sites categorized as 

‘Optimal’ are 20, 15 and 24 for 2008, 2009 and 2010 

respectively. Often about 20% to 30% of the genotypes 

are carried to the following year, but all genotypes 

included in a given year appears in all sites. Therefore, 

stability is obtained on yearly basis for those genotypes 

included in a given year, but overall stability is obtained 

for genotypes used during 2008-2010 (Table 7). 

Heterogonous error variance approach is used in FA 
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model so that each genotype will have an associated 

deviation from the fitted model. 

Results show that mostly different genotypes are stable 

in different year, except CKH08072, CKH08066, and 

CKH08004, which are stable in 2009 and 2010. 

Genotype CKH08051 which is among the first five high 

yielding genotypes in 2008 and 2010 is stable in 2008 

but not in other years. Genotype CKH08017 is top 

yielder and stable (intermediate stability in 2009) in 

2010, the required quality from genotype performance. 

The check variety, WH403, is high yielding in 2008 but 

unstable; it is stable in 2009 but exceptionally low 

yielder (very small PCA1 of SREG2), and has 

intermediate performance both in stability and yield in 

2010. This shows that it is not possible to provide a 

clear-cut approach of selecting stable genotype; 

breeders must consider several criterions to select 

genotypes of interest based on their objectives. In 

general, to judge the relative stability of genotypes, it is 

better to look at ‘Stability Coefficients’, ‘Stability 

Variance’ or ‘unexplained variation’ and the genotype’s 

relative position on the biplot of SREG2 for yield 

potential. For a genotype to be stable it therefore needs 

to have small stability coefficient, small unexplained 

variation and high or intermediate SREG2 PCA1 value 

(an indicator of high or intermediate yield level). 

Table 7. Stability Parameters for ILHT 2008-2010 Eastern Africa Regional Trial Data set. This analysis is only for 16 

Genotypes that are repeated over all the three years period. 

Genotype Code Stability coefficients 
Unexplained 

variation 
Least Square means 

STD Error  of the 
mean 

CKH08004 1.507 0.297 3.577 0.253 
CKH08017 1.373 0.434 3.881 0.241 
CKH08036 1.850 0.497 4.048 0.313 
CKH08039 1.877 0.400 4.592 0.313 
CKH08041 1.555 0.427 3.724 0.267 
CKH08047 1.947 0.510 4.205 0.328 
CKH08048 2.115 0.613 4.625 0.357 
CKH08049 2.380 0.820 4.508 0.403 
CKH08051 2.020 0.827 4.829 0.350 
CKH08066 1.469 0.316 3.757 0.249 
CKH08072 1.372 0.674 3.809 0.253 
CKH08073 1.794 0.407 4.027 0.301 
CKH08075 1.516 0.295 3.886 0.255 
CKH08078 1.471 0.430 3.815 0.255 
CKH08079 1.645 0.360 3.804 0.277 

H513 1.703 0.314 3.733 0.283 
WH403 1.657 0.908 3.745 0.303 
WH505 1.808 0.217 4.188 0.295 

 

PLS model is fitted for ILHT 2009 only due to lack of 

availability of environmental covariables for other years. 

Very few environmental covariable were obtained for 

2009 but analysis conducted to show the possible 

benefit that PLS biplot may provide and contrast that 

can be made with other biplots when sufficient number 

of environmental covariable exists. Results from PLS is 

shown using Figure 3. Three latent vectors of PLS may 

be obtained (as the covariables are only 3). The three 

latent vectors can explain only about 28% of variations 

in the GE component. The two latent vectors explained 

about 98% of the variation in the environmental 

covariable but explained about 18% of variation in the 

GE interaction component only, which is even smaller 

than what was explained by the SREG showing 

complexity of the GE component. This is related to the 

fact that very few environmental covariables are used, 

two of which are on temperature and highly related. But 

the good indication for importance of the method is that 

such very few environmental covariable could explain 

considerable portion of variation in the response 

variable. The result also shows that the minimum and 

maximum temperature values are highly associated as 

expected as they are very close in the plot. This indicates 

that the minimum and maximum temperature affects the 

genotype performance in the same way. The biplot did 

not completely manage to separate high and low yielding 

genotypes due to low percentage accountability of the 

latent factors. But, the biplot seems to somehow agree 

with SREG plot in commonly identifying some high and 
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low yielding genotypes. For example, both plots 

highlighted Genotypes 23, 16 and 22 as high yielding and 

Genotypes 37 and 8 as low yielding. As the rainfall 

covariable is located in the top right quadrant, it is 

associated with high yielding genotypes. More 

environmental covariables might be required to provide 

a better interpretation of the GE component as it is 

complex and could not be effectively disaggregated.

 
 
Figure 3. Biplot of the first and second PLS factors representing 11 locations (indexed as E1 to E11, locations in 
eastern and central Africa region where CIMMYT conduct trials in collaboration with national programs) as Z-Score, 
40 genotypes (indexed by 1 to 40) as Y-loading supported by 3 environmental covariables (TmxT=maximum 
Temperature, TmnT=minimum temperature, RHT=average annual rainfall) as Z-Loading. Measurements for the 
environmental covariable are that of 2009. 
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