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A B S T R A C T 

Development and deployment of wheat varieties having desirable traits for drought prone wheat growing 
environments of Ethiopia, where unpredictable climate variability across seasons and locations is the predominant 
challenge, is the priority tasks of breeders. Hence, this study was aimed to evaluate the performance of 12 bread 
wheat genotypes across 14 environments and; assess the nature and magnitude of genotype by environment 
interaction (GEI) in moisture-limited environments. The field trial was conducted in a Randomized Complete Block 
Design with 4 replications in 2011 and 2012. Stability and GEI analysis were done using Additive Main effect and 
Multiplicative Interactive (AMMI) model. AMMI analysis of grain yield data revealed highly significant (p < 0.001) 
variation among tested genotypes, environments and GEI; and accounted for 2.9%, 80.8%, and 16.3 % of the observed 
significant variation in grain yield, respectively. Besides, 64% of the interaction pattern was explained by the first two 
principal component axes. The AMMI biplots revealed genotype ETBW6095 (G6) is the most stable and well adapted 
for commercial cultivation across moisture limited environments. This genotype out yielded the average of the checks 
by 9 %. In summary, the existence of inconsistent performance of genotypes due to temporal and spatial variability 
clearly confirmed the necessity of multi-environmental trials. Use of AMMI potentially enabled identification of sub-
regions and selection of best genotypes for wide and specific adaptation while conducting METs. 
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INTRODUCTION 

Wheat is grown as a rain-fed crop in the Ethiopian 

highlands, commonly known as the east African wheat-

belt. It ranks third in terms of area after teff and maize, 

and second in terms of production after maize. The area 

coverage under wheat production reaches nearly 1.7 m 

ha which is 12.9% of the area under cereals production; 

and wheat contributed 15.60% (4.5 m MTs) of the cereal 

grain production with an average productivity of 2.5 

ton/ha (CSA, 2014/15).  This makes the country the 

leading wheat producer in Sub-Saharan Africa. 

Despite the huge production potential, an increase in 

production and productivity in the last two decades, 

the annual grain production still lagged far behind its 

consumption. To bridge the gap in the demands of the 

rapid population growth and supply, its productivity 

should consistently be increased. Therefore, wheat 

breeders carry out rigorous germplasm screening 

aiming at developing high yielding varieties with 

reasonable combined resistance to both biotic and 

abiotic stresses. However, selection of genotypes 

having high yield potential and stable performance has 

usually been hindered by the existence of significant 

genotype by environment interaction (GEI). The 

existence of variability in wheat grain yield response 

can be attributed to genotypic (phenology, growth 

habit) and the prevailing environmental variations 

(vernalization and photoperiodic requirements) (Van 

Oosterom et al., 1993). As a consequence, consistent 

development and provision of suitable/best bread 

wheat cultivars requires stratification of environments 

and conducting multi-environmental trials (METs) 

(Basford and Cooper, 1998). The stability of a genotype 
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across environments is defined as the consistent 

performance of a genotype across different 

environments and/or years for a given character 

(Tadesse et al., 2010). 

Identifying stable and high yielding genotypes in METs 

requires two important approaches that should be 

addressed by breeders. First, the prevailing GEI in 

MET’s should be quantified using appropriate 

statistical tools. Secondly, keen observation on the 

nature and magnitude of GEI in the METs is of great 

value to describe the stable performance of genotypes 

under evaluation.  GEI is composed of both additive and 

multiplicative components, it would have been 

important to use statistical methods which enables 

estimate and quantify various GEI variance 

components (Fernandez, 1991).  AMMI model is among 

the multivariate statistical analysis techniques which 

partition both the additive and multiplicative variance 

components of GEI (Gauch and Zobel, 1997). Therefore, 

this study was conducted to evaluate the phenotypic 

performance of elite bread wheat lines and assess the 

nature and magnitude of GEI an under diverse moisture 

limited environments. 

MATERIALS AND METHODS 

Ten advanced bread wheat lines and two check 

genotypes, one standard check (Kakaba) and one local 

check (Hawi) cultivars were evaluated across eight 

locations in 2011 and 2012 main cropping seasons. 

Description of wheat lines and test locations is provided 

in Table 1 and Table 2, respectively. 

Table 1. Characteristic features of the testing locations. 

Location Altitude Soil type LATI LONG 
Temperature 

Rainfall (mm) 
Min. Max. 

Alem Tena 1611 Haplic Andosol 08°.30N 38°.95E - - 728.0 

Dera 1660 Silty loam 08°.20N 39°.19E 6.6°c 26.2°c 680.0 

Geregera 2804 Lithosol 11°.41N 38°.45E 3.8°c 23.4°c 1104.0 

Mekelle 1970 Cambisol 13°.14N 39°.32E 12.3°c 27.1°c 453.3 

Melkassa 1550 Sandy-loam 08°.24'N 39°.12'E 13.6°c 28.6°c 763.0 

Sinana 2400 NA 07°.05'N 40°.12'E 7.9°c 24.3°c 791.0 

Kulumsa 2200 Luvisol 08°.01'N 39°.09'E 10.5°c 22.8°c 820.0 

Alem Ketema 1685 NA NA NA  NA 

 

The field experiment was laid out in a Randomized 

Complete Block Design (RCBD) with four replications. The 

experimental field plot was 6 rows of 2.5 m long with a 0.2 

m inter-row spacing. Each plot was planted at a rate of 150 

kg ha-1. The fertilizer application and other crop 

management practices were done as per recommendations 

of each test locations. Weeds grown in the plots were 

removed manually starting from two weeks after sowing. 

 

Table 2. Test entries for multi-location experiment with code, designation, pedigree and origin. 

Code Designation Pedigree/Cross Origin 

G1 Kakaba KIRITATI//SERI/RAYON CIMMYT 

G2 ETBW6082 KS82W418/SPN/3/CHEN/AE.SQ//2*OPATA/4/FRET2 CIMMYT 

G3 ETBW6083 KS82W418/SPN/3/CHEN/AE.SQ//2*OPATA/4/FRET2 CIMMYT 

G4 ETBW6093 CROC_1/AE.SQUARROSA(205)//KAUZ/3/ENEIDA/4/PSN/BOW//MILAN CIMMYT 

G5 ETBW6094 TC870344/GUI//TEMPORALERA M 87/AGR/3/2 *WBLL1 CIMMYT 

G6 ETBW6095 PASTOR//HXL7573/2*BAU/3/WBLL1 CIMMYT 

G7 ETBW6098 TC870344/GUI//TEMPORALERA M 87/AGR/3/2 *WBLL1 CIMMYT 

G8 ETBW5798 WAXWING*2/TUKURU CIMMYT 

G9 ETBW5827 SAMAR-8/KAUZ'S'//CHAM-4/SHUHA'S' CIMMYT 

G10 ETBW5834 WEEBILL- 1/4/CMH82.17/KAUZ// CMH83.30/3/ VEE#5//DOBUC'S' CIMMYT 

G11 ETBW5801 WAXWING*2/TUKURU CIMMYT 

G12 Hawi CHIL/PRL CIMMYT 
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Data Collection: Data was collected on the following 

traits: days to heading, days to maturity, grain filling 

period, thousand kernel weight, and hectoliter weight 

(HLW) and grain yield per plot. Moreover, disease 

scores on stripe rust, stem rust, leaf rust and septoria 

was also made. 

Statistical analysis: The grain yield data from each 

location were subjected to analysis of variance 

(ANOVA) using the General Linear Model (GLM) 

procedure of the Statistical Analysis System (SAS) 

software (SAS Institute Inc., 2002). Prior to combined 

analysis, the experimental error variance from each 

location was tested for homogeneity using Bartlett test. 

For the combined analysis of variance, each year x 

location combination was considered as an 

environment (E). Since the residual variances 

homogeneous, the following model was employed to 

perform the subsequent combined ANOVA: 

 

ijkijjkjiijk eGxEEREGmY .).().(...   

Where,  

Yijk is the observation of the ith variety G in the jth 

environment E in the kth replication R nested within 

environment E; m is the general mean, e.ijk is the 

variation due to random error, associated with ith 

genotype, in the kth block of the jth environment and (G 

x E) ij is the genotype by environment interaction 

(Shukla, 1972). Based on grain yield data, G× E 

interaction was also partitioned using joint regression 

(Finlay and Wilkinson, 1963; Eberhart, and Russell, 

1966) and the additive main effect and multiplicative 

interaction (AMMI) models (Gauch and Zobel, 1997). In 

addition, AMMI biplot (Site Regression) analysis was 

used to assess similarity and dissimilarity among ten 

environments and interaction patterns between 

genotypes and environments (Hernandez and Crossa, 

2000; Burgeno et al., 2001). The biplots from the AMMI 

analysis were used to visualize the pattern of response 

of genotypes, environment and their interaction; and 

also, to identify genotypes with broad or specific 

adaptations to the target agro-ecologies. 

RESULTS AND DISCUSSIONS 

Mean Genotypic Performance: AMMI analysis of 

variance from the grain yield data set of this trial 

showed highly significant (p ≤ 0.0001) variation among 

tested genotypes, environments and genotype by 

environment interaction (Table 3). Partitioning of the 

total sum of squares revealed that 80.76% was due to 

environmental effects, 2.94% to genotypic effects and 

16.3% was due to genotype by environment interaction 

effects (Table 3). This is an indication that the test 

environments were very diverse, causing most of the 

variation in grain yield. DeLacy et al. (1996) and Gauch 

(1992) also indicated that environment and interaction 

effects are much more than the effects of the genotypes 

in most variety trials. 

 

Table 3. AMMI Model analyses of the genotype x environments interaction of grain yield of 12 wheat lines grown at 14 

Rainfed Environments across Ethiopia. 

Source of variation DF SS MS F-Value %SS 

Total 671 720.5 1.074   

Treatments 167 524.3 3.139 8.86***  

Genotypes 11 15.4 1.398 3.94*** 2.94 

Environments 13 423.4 32.567 42.1*** 80.76 

Block 42 32.5 0.773 2.18***  

Interactions 143 85.5 0.598 1.69*** 16.3 

IPCA 23 27.5 1.195 3.37*** 32.13 

IPCA 21 19.2 0.915 2.58*** 22.46 

IPCA 19 14.7 0.775 2.19** 17.22 

Residuals 80 24.1 0.301 0.85ns  

Error 462 163.7 0.354   

R2=76.3 CV=19.6     

NB: ns, *, **, *** = non-significant and significant effect at 5, 1 and 0.1% respectively. 

 

The environmental mean grain yield varied from the 

lowest 1.70 t ha-1 at Mekelle in 2011 (E9) to highest 

3.84 t ha-1 at Kulumsa 2011 (E8) (Table 4). The mean 

grain yield value of genotypes due to the mean effect 

of the environment ranged from 2.89 t ha-1 of Hawi 

(G12) to 3.38 t ha-1 of ETBW6095 (G6) (Table 4). 

Thus, the variations among the testing environments 

revealed the existence of considerable variability for 
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wheat production in the drier parts of the country. 

Moreover, the presence of interaction effect would imply 

inconsistent response of genotypes across the test 

environments. The significant Genotypes x Environment 

interaction could be due to rank changes of the 

genotypes across the environment, and /or due to 

change of magnitude in the differences between the 

genotypes (Heterogeneity of errors) over the 

Environment. Nevertheless, due to strong crossover type 

of interaction, grain yield of wheat genotypes varied 

from 1.26 t ha-1 in genotype ETBW5834 (G10) grown at 

Mekelle to 6.04 t ha-1 of ETBW6098 (G7) grown at 

Kulumsa within 2011 cropping season (Table 4). This 

rank change would be the source of the significant 

crossover GEI revealed in this data set. However, 

selection of best lines both for specific and wide 

adaptation based on the mean results would be 

misleading (Yan et al., 2000).  

 

Table 4. The mean yield of 12 bread wheat genotypes tested in two years across five locations (2011-2012). 

Genotype 
Environment 

Mean 
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 

G1 3.91 3.06 4.05 3.61 3.03 2.59 3.38 3.83 1.8 2.88 4.35 4.11 2.47 3.03 3.29 
G2 3.85 2.81 3.69 3.47 2.2 2.54 3.52 3.93 1.93 2.38 3.97 3.38 2.63 2.79 3.08 

G3 3.85 2.69 3.47 3.39 2.27 2.53 3.74 4.30 1.95 2.07 3.60 3.16 2.93 2.57 3.04 

G4 3.41 2.73 3.61 3.42 3.75 2.23 3.39 4.82 1.34 2.36 3.89 4.12 2.7 2.51 3.16 

G5 3.47 2.67 3.40 3.71 2.2 2.47 3.88 5.52 1.97 1.93 4.00 3.15 3.17 2.6 3.15 

G6 3.72 3.02 3.89 3.96 2.29 2.69 3.79 5.08 2.14 2.53 4.61 3.61 2.95 3.06 3.38 

G7 3.45 2.87 3.63 4.02 2.41 2.59 3.99 6.04 2.07 2.17 4.48 3.46 3.29 2.84 3.38 

G8 3.15 2.83 3.75 3.85 2.9 2.29 3.39 5.43 1.57 2.48 4.69 3.97 2.64 2.84 3.27 

G9 3.58 2.60 3.39 3.18 3.82 2.23 3.53 4.61 1.34 2.09 3.31 3.87 2.87 2.26 3.05 

G10 2.94 2.61 3.6 3.53 2.58 2.02 2.95 4.66 1.26 2.39 4.51 3.8 2.13 2.66 2.97 

G11 3.56 2.81 3.65 3.64 3.00 2.45 3.66 5.05 1.74 2.31 4.09 3.75 2.92 2.69 3.24 

G12 3.03 2.48 3.38 3.38 2.57 2.02 3.13 4.74 1.3 2.09 4.05 3.52 2.37 2.43 2.89 

Mean 3.49 2.76 3.63 3.6 2.75 2.39 3.53 4.84 1.7 2.31 4.13 3.66 2.76 2.69 3.16 

Note: E1=Alemketema 2011; E2= Alemtena 2011; E3=Alemtena 2012; E4=Dera 2011, E5=Dera 2012; E6=Geregera 

2011; E7= Geregera: 2012; E8=Kulimsa: 2011, E9=Mekelle: 2011, E10=Mekelle: 2012; E11=Melkassa: 2011; E12= 

Melkassa: 2012; E13=Sinana: 2011; E14=Sinana: 2012. 

 

AMMI Model Analysis: AMMI multiplicative component 

further partitioned the GE interaction into thirteen 

interaction principal component axes (IPCAs). However, 

only the first three axes showed a significant 

contribution to the GEI in the AMMI model. The mean 

squares of the three interaction principal components 

contributed to 71.8% of the total GEI with 63 degrees of 

freedom. The remaining ten principal components 

contributed an insignificant portion of the variation. The 

AMMI biplot, which accounted for 64.62% of the GxE, 

provide the interaction principal component scores of 

the first and 2nd IPCA with 44 degrees of freedom. The 

first PC axis (PC1) score explained 32.16 % of the 

variation in GEI, while the second PC axes accounted for 

22.46% of the variability. Many researchers witnessed 

that the best accurate AMMI model prediction can be 

made using the first two IPCA (Gauch and Zobel, 1996; 

Yan et al., 2000 and Annicchinario, 2002). Therefore, the 

dataset obtained from the interaction of 12 genotypes 

tested at 14 environments was best predicted by the 

first two IPCAs. On the other hand, the IPCA scores of a 

genotype in the AMMI analysis are reported as an 

indication of the stability of a genotype across 

environments (Gauch and Zobel, 1996; Purchase, 1997). 

Accordingly, the closer the IPCA scores are to zero, the 

more stable the genotypes are across all their testing 

environments (Purchase, 1997). 

The biplots obtained from the ICPA scores of each 

Genotype and Environments shows the specific GxE 

interactions extracted from residuals which accounts for 

the additive genotype and environment main effects of 

AMMI model analysis and genotypic performance with 

respect to those GE interactions. The distances from the 

origin (0, 0) are indicative of the amount of interaction 

that was exhibited by genotypes either over 

environments or environments over genotypes (Voltas 

et al., 2002). IPCA-1 is characterized by a large negative 

score for variety Kakaba, a large positive score for 

variety G5 and G7. The most divergent genotypes were 

ETBW6098 (G9) and ETBW6093 (G4) and Kakaba. 
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Hence, ETBW6093 (G4) they are sensitive to 

environmental changes and are adapted to specific 

environments. Genotypes ETBW5801 (G11) and Hawi 

(G12), accordingly, showed similar performance. IPCA 

scores for lines G2, G8, G11 and G12 are close to zero. 

This reflects their small residuals in Figure 1 and 

confirms their non-specific performance across the 

environments.  

 
Factor 1 

Figure 1. Biplot for 12 genotypes tested at 14 contrasting environments. 

 

Environments with higher IPCA scores regardless of the 

sign discriminate among genotypes more than those 

with lesser IPCA scores (Kempton, 1984). Thus, 

discrimination among genotypes was high at 

environment E5, E8 and E12, while little discrimination 

among genotypes was observed at E11, E2, E3, and E14. 

The IPCA score for E6 (Mekelle 2011) and E14 (Sinana 

2012) were similar in their sign, and their magnitude is 

close to each other relative to the remaining test 

locations. Therefore, the two environments could belong 

to the same interaction group. Positive (but low 

magnitude) of IPCA-score for E11 (Melkassa 2011) also 

indicated that there might be few similar agro-climate 

features of this test location with E6 and E14. However, 

this is due to the seasonal variation from each location. 

This clearly shows inefficiency of grouping 

environments based only on the IPCA scores. 

The adaptation of genotypes to different environments 

can also be explained more using the AMMI GGE biplots 

(Burgueno et al., 2001). The GGE biplot captures both the 

genotypic and GxE effects. Connecting the extreme 

genotypes on a GGE biplot forms a polygon and the 

perpendiculars to the sides of the polygon form sectors of 

genotypes and sites (Hernandez and Crossa, 2000). 

Hence, the biplot distributes all the 14 testing 

environments into five sectors which lie between four 

dotted (L1, L2, L3and L4) lines perpendicular to the 

horizons of a polygon drawn through the highest values of 

the GGE effects (Fig. 2). The genotypes at a vertex are the 

winners in the sites included in that sector (Vargas and 

Crossa, 2000).  The first sector (lies in between L1and L2) 

consists of nine environments (E1, E2, E3, E4, E5, E6, E9, 

E13 and E14). In this sector, three genotypes (ETBW6095 

(G6), ETBW6098 (G7) and ETBW5798 (G8)) are the 

winning genotypes. In the second sector (between L2and 

L3), where E7 (Geregera 2012) and E10 (Melkassa 2011) 

are inclusive, ETBW6093 (G4) and ETBW5827 (G9) are 

the winning genotypes. Moreover, only the standard 

check genotype, Kakaba (G1), is the winning genotype 

within the third sector under E8. In the fourth sector 

which is bounded by L4 and L1, ETBW6093 (G2) is the 

winning genotypes under environment E11and E12.  
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Figure 2. Biplot for the first two IPCAs to show the which-won-where pattern of 12 bread wheat genotypes evaluated 

across 14 environments (SREG GGE biplot). 

 

With the present data set, the genotype G6, G7, G3, G5 

and G12 expressed a highly interactive behaviour 

(positively or negatively), whereas environments 

excluding E1, E5 and E7 exhibited low interaction. The 

addictive behaviour of the environments which showed 

low interaction indicated that genotypic yield in those 

environments was highly correlated with the overall 

genotypic means across environments. Among the 

extreme genotypes, G4 and G9 are located in pairs 

indicating their similar response pattern. The genotypes 

located at the sector’s vertex had optimum performance 

in their respective mega-environment. 

Test locations such as Alemtena, Dera and Sinana in both 

years are clustered in one similar sector indicating the 

repeatable performance of the genotypes observed in 

these respective locations and they could be considered 

as one mega-environment for wheat variety evaluation 

and recommendation. Among the sites, Melkassa was 

relatively closer to biplot origin and hence less 

interactive location and could be good enough location 

for selection of genotypes with average adaptation. The 

non-repeatable performance of test genotypes for grain 

yield could be associated largely with the presence of 

prevalent diseases mainly wheat rusts and septoria leaf 

blotch. Hence, selection of best lines based on the 

analysis of GEI of grain yield data would be misleading. 

Wheat breeders in the national program, therefore, must 

speculate carefully the selection of lines for release 

giving due attention to the most prevalent diseases of 

wheat and other climatic factors. 

CONCLUSION 

AMMI clearly indicated genotypes with narrow 

adaptability while others with superior performance in all 

environments. The interaction of the 12 genotypes was 

best predicted by the first three principal components of 

genotypes and environments but the first two PCs could 

also explain most of the variations. Thus, biplots 

generated using genotypic and environmental scores of 

the first two AMMI components can help breeders to 

understand the behaviour of the genotypes, environments 

and their interactions. Moreover, AMMI biplots have 

enabled identifying suitable sub-mega environments for 

further varietal evaluation.   We identified some lines with 

stable performance, and genotype ETBW6095 (G6) out-

yielded the average of varieties used as checks nearly by 

9.0 %, thus providing useful material to the farmers in 

moisture-limited areas and to the wheat breeders as well. 

A combination of various multivariate statistics should be 

used to assess genotypic stability, particularly under a 

stressed condition. 
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