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A B S T R A C T 

This paper approximates the finite sample distributions of risk-return ratios using bootstrapped Gram-Charlier 
expansion, in the case of independent returns case. Under GARCH modeling for returns, we approximate risk-return 
ratios by bootstrap and bootstrapped Gram-Charlier expansion. Hansen method is also applied and a chi-squared 
approximation is proposed. We also apply our results for S&P 500 data set. Finally, a conclusion section is given. 
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INTRODUCTION 

Portfolio construction is an important problem for 

investors. They should choose among risky asset in 

order to minimize the risk for a given target return. 

Indeed, a weight allocation problem is solved to obtain 

an optimum select. Markowitz’s mean-variance method 

is a rational solution for quantitative finance experts. 

However, there are some other methods like the Capital 

Asset Pricing Model (CAPM) to price the risky asset in 

the presence of risk-less asset. Following Scherer and 

Martin (2005) (hereafter SM), a portfolio is optimum if 

there exists a relationship between marginal 

contribution of a specified return to portfolio risk and 

marginal implied return. The related slop is called 

Sharpe ratio. This index belongs to the big class of risk-

return ratios denoted by ζ. Another important member 

of this family is Sortino ratio. In this paper, the finite 

distribution of these indices are studied 

The above mentioned distributions have applications in 

calculation of Value at Risk (VaR). One of the main 

factors that exists in each financial activity is risk. This 

introduces uncertainty into financial problems and, 

therefore, decision making is made difficult under such 

conditions. Indeed, after famous financial disasters, it is 

advisable to re-estimate market risk. One risk measure is 

VaR (see, Kupiec, 1995). In many fields of applied 

statistics, estimators and test statistics are too 

complicated. Hansen (1992) refers the distribution of 

these statistics as non-standard distributions. It is clear 

that deriving the exact distribution of these statistics is 

too difficult. The computational statistics is a valuable 

tool to overcome to this difficulty. For a series of 

continuous-valued returns 𝑟𝑖 , 𝑖 = 1, … , 𝑛 these ratios are 

given by; 

ζ𝑆ℎ =
𝑟̅

𝑆𝑟

 and ζ𝑆𝑜 =
𝑟̅

√ 1
𝑛 − 1

∑ 𝑟𝑖
2𝐼(𝑟𝑖 < 0)𝑛

𝑖=1

. 

where 𝑟̅ and 𝑆𝑟  are the sample mean and variance of 

𝑟𝑖 , 𝑖 = 1, … , 𝑛. Notations ζ𝑆ℎand ζ𝑆𝑜  denote Sharpe and 

Sortino ratios, respectively. SM (2005) mentioned that 

the finite sample distributions of these ratios are too 

complicated and they suggested to use the re-sampling 

methods such as bootstrap. 

As mentioned by SM (2005), the small sample properties 

of ζ𝑆ℎand ζ𝑆𝑜  are difficult to obtain. They approximated 

the distribution of ζ𝑆ℎ  by a standard normal law. 

However, this select doesn’t seem reasonable. Since 

suppose that 𝑟𝑖 ’s come from a normal law with zero 

mean and variance 𝜎2. One can see that √𝑛ζ𝑆ℎhas t-

student distribution with 𝑛 − 1 degrees of freedom and 

note that the normal and t-student are not similar for 

small 𝑛’s. As 𝑛 →  ∞, √𝑛ζ𝑆ℎ  converges to a normal 

distributions. Therefore, the ζ𝑆ℎ  may be approximated 

by a form of  𝑐𝑛𝑁(0, 𝜎𝑛
2) for some positive sequences 𝑐𝑛 . 

Note that the normal approximation is valid only for 
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large sample sizes and SM don’t specify the relation of 

estimated parameters to sample size. One can see that 

√𝑛ζ𝑆𝑜  converges to N(0, 2) distribution and 𝜎𝑛
−2𝑟1

2𝐼(𝑟𝑖 <

0) is distributed as mixture of two distributions which 

are degenerate law on 0 and chi-square distribution with 

one degree of freedom (in the normal case). Therefore, 

distribution of 𝜎𝑛
−2 ∑ 𝑟𝑖

2𝐼(𝑟𝑖 < 0)𝑛
𝑖=1  is too complicated. 

However, for small and moderate sample sizes, it is 

much better to include more terms to approximate a 

specified distribution (say Gram-Charlier expansion). 

These terms are functions of moments of target 

distribution which we can estimate them by using the 

bootstrap technique (see Hall (1992)). An excellent 

reference about bootstrap is Efron and Tibshirani 

(1998). SM (2005) described the S+NUOPT module and 

related re-sampling co des. 

SM (2005) assumed returns are independent observed 

random variables which is not true say for hedge fund 

data. They also suggested an autoregressive model for 

returns and bootstrapping ζ𝑆ℎand ζ𝑆𝑜 . However, the 

usual model for returns is the GARCH time series. For 

example, Zivot and Wang (2003) modeled the daily Ford 

stock log returns using a GARCH(1,1) model. 

This paper is organized as follows. Following Hall 

(1992), we use the combination of bootstrap and Gram-

Charlier techniques to approximate distributions ζ𝑆ℎand 

ζ𝑆𝑜 . We also bootstrap risk-return ratios under GARCH 

modeling for returns. It is seen again that it is better to 

bring our results in the form of series expansions. We 

also apply our results for S&P 500 time series. Finally, 

conclusions are given. 

Gram-Charlier expansion: In this section, we study the 

series expansions for distributions of Sharpe and Sortino 

ratios. The Gram-Charlier series of the CDF of Sharpe 

and Sortino ratios are given by: 

𝐹(𝑥) = 𝑁(𝑧) {1 +
𝑘3

3! 𝜎3
𝐻3(𝑧) +

𝑘4

4! 𝜎4
𝐻4(𝑧)}, 

where 𝑁(. ) is the cumulative distribution function of 

Normal standard and 𝑧 =
𝑥−𝜇

𝜎
. Hermit polynomials are 

𝐻3(𝑥) = 𝑥3 − 3𝑥 and 𝐻4(𝑥) = 𝑥4 − 6𝑥2 + 3. Here, 𝜇, 𝜎 

and 𝑘𝑟 are the mean, standard deviation and 𝑟-th 

cumulants of specified ratio. These quantities are 

estimated by the bootstrap method. 

Example 1. For 𝑛 =  200 independent and identically 

distributed (iid) observations from standard normal 

distribution as 𝑍𝑡 , the 𝜃 = (𝜇, 𝜎, 𝑘3, 𝑘4) is (0, 0.005, 0, 0) 

for Sharpe ratio which again suggest a standard 

approximation and they are 5.4 × 10−4, 1.04 × 10−2, 3.3 

× 10−4, and 2.05 × 10−5. Next, we change our positions 

to a distribution with heavier tail such as t-student with 

one degree of freedom. It is seen that the values of θ are 

the same as normal distribution for Sharpe ratio but 

they are too big for Sortino ratio. For example, the 𝑘4 = 

1120349269. 

Example 2. For 𝑛 =  100 iid observations from 𝑁(𝜔, 𝑣2) 

distribution, the mean and variance of normal 

approximation of Sharpe ratio are given as follows. 

These quantities are estimated by applying a bootstrap 

method with 10000 repetitions. 

Table 1. Normal parameters. 

𝜔 𝑣2 mean var 

0 0.1 -0.0006 0.010772 

0 1.2 0.0027 0.01115 

1 0.1 301912 0.06161 

1 1.2 0.9593 0.01398 

GARCH modeling: It is known that the usual models for 

returns are the GARCH time series. Therefore, to find the 

𝜃 in this case, it is enough to obtain the bootstrap re-

samples 𝑟𝑖
∗, 𝑖 = 1, … , 𝑛. Let 𝑟𝑖 , 𝑖 = 1, … , 𝑛 be the GARCH(p, 

q) time series, that is, 

𝑟𝑖 = 𝜎𝑖𝑍𝑖  

𝜎𝑖
2 = 𝑎0 + ∑ 𝑎𝑖𝑟𝑡−𝑖

2 + ∑ 𝑏𝑗

𝑞

𝑗=1

𝑝

𝑖=1

𝜎𝑡−𝑗
2 . 

To derive 𝑟𝑖
∗, it is enough to estimate 𝑎0, 𝑎𝑖 , 𝑖 =

1, … , 𝑝, 𝑏𝑗 , 𝑗 = 1, … , 𝑞 and derive 𝜎̂𝑖
2 and 𝑍̂𝑖. Then, we 

suggest to re-sample 𝜎̂𝑖
2 and 𝑍̂𝑖  to derive 𝑟𝑖

∗. Finally 

calculate ζ𝑆ℎand ζ𝑆𝑜 . We repeat this procedure for 𝑏 =

 1, 2, . . . , 𝐵 (sufficiently large, say 10000). 

Example 3. Consider a GARCH(1,1) model (see 

Bollerslev, 1986 and Vyazilov,1999) with 𝑎0 = 0.001, 

𝑎1 = 0.01 and 𝑏1 = 0.95. And generate 100 samples 

from this series. Next, suppose that the parameters are 

unknown and using the quasi-maximum likelihood 

method estimate these parameters where 𝑎̂0 = 0.0098, 

𝑎̂1 = 0.02  and 𝑏̂1 = 0.94. We use the S+Finmetrics 

commands. Setting B = 10000 for n = 200, we plot the 

bootstrapped sampling distribution of ζ𝑆ℎand ζ𝑆𝑜in 

Figure 1. It is seen that the finite sample distribution of 

Sharpe ratio is approximated well by a normal 

distribution but this distribution however seems to be 

misleading for Sortino ratio. 

However, using the bootstrap method, we can estimate 𝜃 

as 3.3× 10−4, 0.004, 7 × 10−6 and 1.19 × 10−6 for Sharpe 

ratio and they are 0.005, 0.082, 2.6 × 10−4 and 2.2 × 10−5.  
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Figure 1. Histogram and density of bootstrapped rist-return ratios in GARCH (1,1), a0=0.001, a1=0.95, b1=0.01, n=250 

and B=10000. 

This shows that again the normal approximation is good for 

both Sharpe and Sortino ratios. The sight was changed to 

give more weight to arch parameter 𝑎1. That is, let 𝑎0 =

0.001, 𝑎1 = 0.95 and 𝑏1 = 0.01. Then, again the normal 

approximation works well for Sharpe ratio with θ = (0, 

0.0041, 0, 0). However, these values are 0.00905, 0.0096, 

7.38 × 10−4 and 1.8 × 10−4 . The empirical densities of risk-

return ratios are given in Figure 2. 

 
Figure 1. Histogram and density of bootstrapped rist-return ratios in GARCH (1,1), a0=0.001, a1=0.95, b1=0.01, n=250 

and B=10000. 



J. Bus. Financ. 03 (01) 2017. 15-19 

18 

Example 4. The mean and variance of approximation 

normal distribution applied for the Sharpe ratio are 0 and 

0.0039 for 𝑎0 = 0.001, 𝑎1 = 0.01 and 𝑏1 = 0.95 and they 

are 0 and 0.00394 for 𝑎0 = 0.001, 𝑎1 = 0.95 and 𝑏1 = 0.01. 

Example 5. Here, an approximation, based on method of 

Hansen (1992) is proposed for the distribution of Sharp 

ratio. We understood that 𝑚 =  1 is sufficient for all 𝑛 

and then: 

𝛾2(𝑡|𝜃) = 𝛾(𝑡) = 𝜃0 + 𝜃1𝑡. 

Table 2 gives numerical approximations of for certain 

selected 𝜃̂0 and 𝜃̂1 for some selected sample sizes. 

Note that to the values of Table are 10𝜃̂0 and 10𝜃̂1. 

Error analysis is given in Table 2 including the 

maximum (max) and median (med) of 100 absolute 

errors. That is, the rows ”max” and ”med” report 

maximum and median absolute error across 100 

fitting distributions for Sharp ratio. To keep the Table 

to a reasonable size, we report 1000×absolute errors. 

For example, the real maximum and median errors for 

𝑛 =  9 are 1.27/1000 = 0.00127 and 0.22/1000 =

 0.00022, respectively. It is seen these errors are 

negligible. 

Table 2 (a). Values of 𝑣̂, 10𝜃̂0 and 10𝜃̂1 for Sharp ratio. 

𝑛 5 6 7 8 9 10 15 20 25 

𝑣̂ 1.04 1.11 1.2 1.27 1.29 1.32 1.44 1.54 1.55 

10𝜃̂0 0.585 0.5 0.68 0.814 0.612 0.609 0.541 0.617 0.477 

10𝜃̂1 8.265 6.926 6.001 5.524 4.627 4.143 2.815 2.064 1.631 

𝑛 30 35 40 50 60 70 80 90 100 

𝑣̂ 1.63 1.64 1.65 1.67 1.7 1.74 1.76 1.77 1.79 

10𝜃̂0 0.525 0.553 0.425 0.224 0.282 0.389 0.367 0.354 0.297 

10𝜃̂1 1.39 1.74 1.023 0.817 0.614 0.586 0.511 0.451 0.407 

Table 2 (b). 1000×absolute Errors for Sharp ratio 

𝑛 5 6 7 8 9 10 15 20 25 

Max 0.86 1.93 1.03 1.13 1.27 1.33 1.65 1.78 1.9 

Med 0.57 0.101 0.25 0.58 0.22 0.13 0.44 0.52 0.66 

𝑛 30 35 40 50 60 70 80 90 100 

Max 2.07 2.25 2.03 1.91 2.01 2.07 2.22 2.35 2.42 

Med 0.16 0.14 0.7 0.61 0.36 0.55 0.13 0.48 0.15 
 

Example 6. Here, we propose a chi-squared 

approximation in the form of 𝑎𝑛𝜒𝑑𝑓𝑛

2 for squared of 

Sortino ratio. The moment estimates of 𝑎𝑛 and 𝑑𝑓𝑛 are: 

𝑎𝑛 =
𝜋𝑛

2

2𝜇𝑛

 and 𝑑𝑓𝑛 =
2𝜇𝑛

2

𝜋𝑛
2

 

where 𝜇𝑛 and 𝜋𝑛
2 are the mean and variance of squared 

of Sortino ratio. Table 3 gives the values of 𝜇𝑛 and 𝜋𝑛
2 

and  𝑑𝑓𝑛 . Table 4 gives the median and maximum of 

absolute error. 

Table 3: Values of parameters. 

n 10 20 30 40 60 80 100 

𝜇𝑛 6.061 13.78 21.89 30.57 48.4 65.66 84.33 

𝜋𝑛
2 137.63 458.7 960.25 1711.4 3663.53 6216.98 1710.17 

𝑎𝑛 11.44 16.62 21.93 28 37.85 47.35 57.57 

𝑑𝑓𝑛 0.526 0.83 0.99 1.1 1.28 1.38 1.46 

Table 4: Max and Median of errors. 

n 10 20 30 40 60 80 100 

Max 0.0015 0.0015 0.0014 0.0012 0.0016 0.0014 0.0015 

Med 0.0005 0.0003 0.0004 0.0006 0.0004 0.0005 0.0005 
 

Example 7. In this example, we let 𝑎1 = 0.02 and 𝑏1 =

0.94. We check the max and med of errors for some 

selected values for 𝑎0’s. The results are given in the 

Table 5. 

Table 5. The max and med for various 𝑎0. 

𝑎0 0.01 0.008 0.005 0.0025 0.0017 

max 0.056 0.088 0.12 0.78 1.5 

med 0.023 0.045 0.09 0.53 0.87 
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Example 8. Zivot and Wang (2003) modeled the daily 

Ford stock returns using a GARCH (1,1) series with 𝑎0 = 

6.53 × 10−6, 𝑎1 = 0.074, and 𝑏1 = 0.91. We apply the 

aforementioned method here and we found that the max 

and med of  
𝑒𝑡

𝑡
 for 𝑡 =  1, . . . , 250 are 0.032 and 0.0095, 

respectively. 

Real data: The daily returns data on closing prices of the 

S&P 500 are accessible and valuable time series. The 

prices of this time series from 10/4/1983 to 8/30/1991, 

that is n = 2000 observations is considered. Here, the 

parameters of Gram-Charlier series 𝜃 is 0.04266, 

0.0006815, 0 and 0 for Sharpe index and they are 0, 

0.0082, 0 and 0 for Sortino ratio. This suggest that the 

bootstrapped normal approximation again works well in 

this case. The corresponding densities are given in 

Figure 3. 

 
Figure 3. Time seires plot of S&P500 and histograms Sharp and Sortino indecies. 

CONCLUSION 

The finite sample distribution of risk-return ratios are 

approximated using Gram-Charlier expansion and 

bootstrap method under independent and GARCH 

modeling for returns. The S&P 500 are analyzed. Hansen 

method is also applied and a chi-squared approximation is 

proposed. We also apply our results for S&P 500 data set. 
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