Taruna Kaura, Abhishek Mewara, Sudarshan Chaudhry, Amit Sharma, Rakesh Sehgal


Armigeres subalbatus is known to be the vector for parasites of many human diseases like malaria, Japanese encephalitis, filariasis etc. In India, the molecular nature of Ar. subalabtus species is poorly understood. We studied ITS2 molecular characterization of two allopatric populations of this species. Methods: The ITS1 and 2 spacer regions of the two populations A and B of Ar. subalbatus were amplified and sequenced. Restriction digests were also generated using three restriction enzymes HaeIII, PstI and HpaII, however, only HaeIII proved to be useful for distinguishing the two populations by ITS1, while none was found useful for ITS2 sequence. Results: The correlation of indel bias with intron length was also analyzed. Both ITS1 and 2 sequences showed positive correlation with intron length. The variation in intron length is mainly due to presence of highly repetitive sequences, which results in higher base pair length of introns. Both interspersed and tandem repeats were analyzed but none of the type of repeat was found to be common in both the sequences of populations A and B. In addition, secondary structures were also analyzed and only two portions were found to be similar in population A and B of both the sequences. Conclusion: An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. From this comparative data, it is evident that detectable changes in the genome can prove useful as first indicators that a monotypic population actually consists of two or more genotypes.


Ar. subalbatus populations, ITS1, ITS2, secondary structure analysis

Full Text:



Apostol B. L, W. C. Black, P. Reiter and B. R. Miller. 1994. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. American Journal of Tropical Medicine Hygiene. 51: 89 – 97.

Ayres C. F. J, T. P. A. Romao, M. A. V. Melo-Santos and A. F. Furtado. 2002. Genetic diversity in Brazilian populations of Aedes albopictus. Mem.Inst. Ostwaldo. Cruz. Janeiro. 97(6): 871-875.

Ballinger-Crabtree M. E, W. C. Black and B. R. Miller. 1992. Use of genetic polymorphisms detected by the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations. American Journal of Tropical Medicine Hygiene. 47(6): 893-901.

Banerjee A. K., N. Arora and U. S. N. Murty. 2007. How far is ITS2 reliable as a phylogenetic marker for the mosquito genera. Electronic Journal of Biology. 3(3): 61-68.

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research. 27(2): 573-580.

Bhargavi R., S. Vishwakarma and U. S. Murty. 2005. A secondary structural common core in the ribosomal ITS2 (internal transcribed spacer) of Culex species from diverse geographical locations. Bioinformation. 1(2): 52-55.

Black I. V. W. C., K. S. Rai, B. J. Turco and D. C. Arroyo. 1998. Laboratory study of competition between United States strains of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) Journal of Medical Entomology. 32: 847–852.

Chaudhry S., and R. Kohli. 2007. Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment in two populations of Culex quinquefasciatus Say (Culicidae: Diptera). National Academy of Science Letters. 30(1-2): 55-60.

Chaudhry S., and M. Sharma. 2006. RAPD-PCR based genomic characterization of three populations of Anopheles (Cellia) stephensi (Culicidae: Diptera). Journal of Cytology and Geneteics. 7(NS): 121-130.

Chaudhry S, M. Sharma, S. Gupta and J. S. Chillar. 2006. Multiple technique based species discrimination in the taxon Anopheles (Cellia)stephensi (Culicidae:Diptera). Vector Biology (eds. V.P. Sharma and Jagbir Singh Kirti).The National Academy of Sciences, India. 105-112.

Coleman M., and J. Hemingway. 2007. Insecticide resistance monitoring and evaluation in disease transmitting mosquitoes. Journal of Pesticide Science 2007; 32 (2): 69 – 76.

Collins F. H., C. H. Porter and S. E. Cope. 1990. Comparison of rDNA and mtDNA in the sibling species Anopheles freeborni and An. hermsi. American Journal of Tropical Medicine Hygiene. 42: 417-423.

Cooper L, R. D. Cooper and T. R. Burkot. 1991. The Anopheles punctulatus complex: DNA probes for identifying the Australian species using isotopic, chromogenic and chemiluminescence detection systems. Experimental Parasitology 1991; 73: 27-35.

Cornel A. J., C. H. Porter and F. H. Collins. 1996. Polymerase chain reaction species diagnostic assay for Anopheles quadrimaculatus cryptic species (Diptera: Culicidae) based on ribosomal DNA ITS2 sequences. Journal of Medical Entomology. 33(1): 109-116.

Das P., S. Bhattacharya, S. Chakraborty, A. Palit, S. Das, K. K. Ghosh, and A. K. Hati. 1983. Diurnal man-biting activity of Armigeres subalbatus(Coquillett, l898) in a village in WestBengal, Indian Journal of Medical Research. 78: 794-798.

Das U. P., A. K. Hati and A. B. Chowdhuri. 1971. Nocturnal man-biting mosquitoes of urban and rural areas, Bull. Cal. Sch. Trop. Med. 19(4): 80-83.

Dassanayake R. S., Y. I. N. S. Gunawardene and D. D. N. K. D. I. S. Babaranda. 2008. ITS-2 secondary structures and phylogeny of Anopheles culicifacies species. Bioinformation. 2(10): 456-460.

Dezfouli S. R. N., M. A. Oshaghi, H. Vatandoost, E. Djavadian, Z. Telmadarei and M. Assmar. 2002. Use of Random Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR) and ITS2 PCR assays for differentiation of populations and putative sibling species of Anopheles fluviatilis (Diptera: Culicidae) in Iran. Iranian Journal of Public Health. 31(3-4):133-137.

Djadid N. D., S. Gholizadeh, M. Aghajari, A. H. Zehi, A. Raeisi and S. Zakeri. 2006. Genetic analysis of rDNA-ITS2 and RAPD loci in field populations of the malaria vector, Anopheles stephensi (Diptera: Culicidae): implications for the control program in Iran. Acta Trop. 97(1): 65-74.

Foley D. H., J. H. Bryan, D. Yeates and A. Saul. 1998. Evolution and systematics of Anopheles: insights from a molecular phylogeny of Australasian mosquitoes. Molecular Phylogenetics Evolution. 9(2): 262-275.

Fritz G. N., J. Conn, A. Cockburn and J. A. Seawright. 1994. Sequence analysis of the ribosomal DNA internal transcribed spacer 2 from populations of Anopheles nuneztovari (Diptera: Culicidae). Molecular Biology Evolution. 11: 406-416.

Ghosh K. K., and A. K. Hati. 1980. Seasonal man-biting activity of Anopheles annularis in rural West Bengal, Bull. Cal. Sch. Trop. Med. 28: 6-10.

Goswami G., K. Raghavendra, N. Nanda, S. K. Gakhar and S. K. Subbarao. 2005. PCR-RFLP of mitochondrial cytochrome oxidase subunit II and ITS2 of ribosomal DNA: markers for the identification of members of the Anopheles culicifacies complex (Diptera: Culicidae). Acta Tropica; 95: 92-99.

Joseph N.,E. Krauskopf, M. I. Vera and B. Michot. 1999. Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Research. 27: 4533–4540.

Kambhampati S. A., 1995, phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes; Proceeding of National Academy of Science USA. 92: 2017–2020.

Kambhampati S and K. S. Rai. 1991. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome 1991a; 34: 288–292.

Kambhampati S and K. S. Rai. 1991b Variation in mitochondrial DNA of Aedes species (Diptera: Culicidae). Evolution. 45: 120–129.

Kashi Y., D. King and M. Soller. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends Genetics. 13: 74-78.

Kengne P., P. Awono-Ambene, C. Antonio-Nkondjio, F. Simard and D. Fontenille. 2003. Molecular identification of the Anopheles niligroup of African malaria vectors. Medical Veterinary Entomology. 17: 67-74.

Munstermann L. E., 1994. Unexpected genetic consequences of colonization and inbreeding: allozyme tracking in Culicidae (Diptera). Annals of Entomological Society of America. 87: 157–164.

Mutebi J. P., W. C. Black, C. F. Bosio, W. P. J. R. Sweeney and G. B. J. R. Craig. 1997. Linkage map for the Asian tiger mosquito Aedes(Stegomyia)albopictus, based on SSCP analysis of RAPD markers. Journal of Heredity. 88: 494-498.

Narang S. K., T. A. Klein, O. P. Perera, J. B. Lima and A. T. Tang. 1993c Genetic evidence for the existence of cryptic species in the Anopheles albitarsis complex in Brazil: allozymes and mitochondrial DNA restriction fragment length polymorphisms. Biochemistry Genetics. 31(1-2): 97-112.

Narang S. K., J. A. Seawright, S. E. Mitchell, P. E. Kaiser and D. A. Carlson. 1993b. Multiple technique identification of sibling species of the Anopheles quadrimaculatus complex. Journal of American Mosquito Control Association. 9: 463-464.

Porter C. H., and F. H. Collins. 1991. Species diagnostic differences in a rDNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera :Culicidae). American J. of Tropical Medicine & Hygiene. 45(2): 271-279.

Pieter V., H. Rene, B. Marjo, R. Martin. 1995. AFLP: A new technique for DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Research. 18: 6531-6535.

Prakash A., C. Walton, D. R. Bhattacharyya, S. O. Loughlin, P. K. Mohapatra and J. Mahanta. 2006. Molecular characterization and species identification of the Anopheles dirus and An. minimus complexes in North-east India using r-DNA ITS2. Acta Tropica. 100: 156-161.

Rajavel A. R., 1992. Larval habitat of Armigeres subalbatus (COQ) and its characteristics in Pondicherry.Southeast Asian. Journal of Tropical Medicine Public Health. 23(3): 470-3.

Reinert J. F., P. E. Kaiser and J. A. Seawright. 1997. Analysis of the Anopheles (Anopheles) quadrimaculatus complex of sibling species (Diptera: Culicidae) using morphological, cytological, molecular, genetic, biochemical, and ecological techniques in an integrated approach. Journal of American Mosquito Control Association. 13: 1-102.

Reno H. A., M. H. Vodkin and R. J. Novak. 2000. Differentiation of Aedes triseriatus Say from Aedes hendersoni Cockerell (Diptera: Culicidae) by restriction fragment length polymorphisms of amplified ribosomal DNA. American Journal of Tropical Medicine & Hygiene. 62: 193–199.

Severini C., F. Silverstrini, P. Mancini, G. La Rosa and M. Marinucci. 1996. Sequence and secondary structure of the rDNA second internal transcribed spacer in the sibling species Culex pipiens L. and Cx. quiquefasciatus Say (Diptera: Culicidae). Insect Molecular Biology. 5(3): 181-186.

Severson D. W., A. Mori, Y. Zhang and B. M. Christensen. 1994. The suitability of restriction fragment length polymorphism markers for evaluating genetic diversity among and synteny between mosquito species. American Journal of Tropical Medicine &Hygiene. 50(4): 425-432.

Sharma D., B. Issac, G. P. Raghava and R. Ramaswamy. 2004. Spectral Repeat Finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics. 20: 1405-1412.

Sharpe R. G., R. E. Harbach and R. K. Butlin. 2000. Molecular variation and phylogeny of members of the members of the Minimus group of Anopheles subgenus Cellia (Diptera: Culicidae). Systematic Entomology. 25: 263-272.

Tang J., K. Pruess, E. W. Cupp and T. R. Unnasch. 1996. Molecular phylogeny and typing of blackflies (Diptera: Simuliidae) that serve as vectors of human or bovine onchocerciasis. Medical Veterinary Entomology. 10: 228–234.

Tautz Z. T., M. Trick and G.A. Dover. 1986. Cryptic simplicity in DNA is a major source of DNA variation. Nature (London). 332: 652-658.

Torres E. P., D. H. Foley and A. Saul. 2000. Ribosomal DNA sequence markers differentiate two species of Anopheles maculatus (Diptera: Culicidae) complex in Philippines. Journal of Medical Entomology. 37: 933-937.

Van Bortel W., T. Sochanta, R. E. Harbach, D. Socheat, P. Roelants, T. Backeljac and M. Coosemans. 2002. Presence of Anopheles culicifacies B in Cambodia established by the PCR-RFLP assay developed for the identification of Anopheles minimus species A and C and four related species. Medical Veterinary Entomology. 16: 329–334.

Wattal B. L., and N. L. Kalra. 1967. Region-wise Pictorial Keys to the Female Indian Anopheles. Bulletin of the National Society of India for Malaria and other mosquito-borne diseases, National Society of India for Malaria and other Mosquito-Borne Diseases. 9(2): 85-138.

Wesson D. M., C. H. Porter and F. H. Collins. 1992. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Molecular Phylogenetic Evolution. 1: 253-269.

Williams J. G. K., A. R. Kubeklik, K. J. Livak, J. A. Rafalski and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Research. 18: 6531-6535.

Wilkerson R. C., T. J. Parsons, D. G. Albright, T. A. Klein and M. J. Braun. 1993. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles). Insect Molecular Biology. 1: 205-211.

Xiang B., and T. D. Kochar. 1991. Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera). Genome. 34: 306-311.

Zhang D. X., and G. M. Hewitt. 2003. Nuclear DNA analysis in genetic studies of populations: practice, problems and prospects. Molecular Ecology. 12: 563-584.


  • There are currently no refbacks.

Copyright (c) 2019 International Journal of Entomological Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Entomological Research
ISSN: 2310-3906 (Online), 2310-5119 (Print).
© EScience Press. All Rights Reserved.