INSECT DIGESTIVE GLYCOSIDASES: STRATEGIES OF PURIFICATION, BIOCHEMICAL PROPERTIES AND POTENTIAL APPLICATIONS, A REVIEW

Eugène J.P. Kouadio, Kouassi H. Konan, Kouakou M. Djè, Edmond A. Dué, Lucien P. Kouamé

Abstract


Insects are animal of extraordinary ecological and economic importance. In these ones, digestive glycosidases are to play a key physiological role in maintenance, survival and reproduction. Moreover, these enzymes were extensively investigated in terms of purification, biochemical and molecular characterization and potential application as tools in glycobiology.  This review focuses on amylolytic, cellulolytic and xylanolytic enzymes in insects in order to provide some data on purification strategies, biochemical and molecular properties and potential applications. These digestive glycosidases from insects are generally α-amylase and α-glucosidase, endoglucanase and β-glucosidase, xylanase and β-xylosidase for amylolytic, cellulolytic and xylanolytic enzymes, respectively. Their purifications are done using ammonium sulphate precipitation followed by chromatographic steps as gel filtration, ion-exchange and hydrophobic interaction. Their biochemical characterization indicated generally optimum pH and temperature values between 3.5 and 10.0 and 30 and 60°C, respectively. Molecular characterization in terms of molecular weight estimation indicated that these enzymes are generally medium in size with molecular weights of less than 200 kDa. Regarding their applications, some of these enzymes could be useful for saccharification of glucose polymers in order to produce syrup of oligosaccharides mixture, when others could be the valuable tools for the synthesis of oligosaccharides and neoglycoconjugates by transglycosylation reactions and also in biotechnological application and biofuel production. But also, in particular, α-amylases are used as a target for the control of pest insects.


Keywords


Insect, digestive glycosidases, α-amylase, α-glucosidase, endoglucanase, β-glucosidase, endoxylanase, β-xylosidase, purification, characterization, application

Full Text:

PDF XPS

References


Abo-Khatwa; N. 1978: Cellulase of fungus-growing termites: a new hypothesis on its origin. Cellular and Molecular Life Sciences, 34: 559-560.

Adlakha, N., R. Rajagopal, S. Kumar, V. S. Reddy and S. S. YAZDANI. 2011. Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Applied and Environmental Microbiology, 77: 4859-4866.

Aghaali, N., M. Ghadamyari and M. Ajamhasani. 2012. Biochemical characterization of glucosidases and galactosidases from Rosaceae branch borer, Osphranteria coerulescens Redt. (Col.: Cerambycidae). Romanian Journal of Biochemistry, 49: 125-137.

Agrawal, O. P. and J. Bahadur. 1978. Role of salivary gland in the maintenance of midgut amylase activity in Periplaneta americana L. Experientia, 34: 1552.

Agusti, N. and A. C. Cohen. 2000. Lygus hesperus and L. lineolaris (Hemiptera: Miridae), phytophages, zoophages, or omnivores: evidence of feeding adaptations suggested by the salivary and midgut digestive enzymes. Journal of Entomological Science, 35: 176-186.

Ahmadi, F., A. Khani and M Ghadamyari. 2012. Some properties of α-amylase in the digestive system and head glands of Cryptolaemus montrouzieri (Coleloptera: Coccinellidae). Journal of Crop Protection, 1: 97-105.

Ahsaei, S. M., V. Hosseininaveh and M. Bigham. 2013. Biochemical properties of digestive carbohydrases from the sugar beet weevil, Lixus incanescens (Coleoptera: Curculionidae). Arthropods, 2: 126-136.

Anand, A. A., S. J. Vennison, S. G. Sankar, D. I. Prabhu, P. T. Vasan, T. Raghuraman, C. J. Geoffrey and S. E. Vendan. 2010. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Science, 10: 107.

Arakawa, G., H. Watanabe, H. Yamasaki, H. Maekawa and G. Tokuda. 2009. Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Bioscience, Biotechnology, and Biochemistry, 73: 710-718.

Asadi, A., M. Ghadamyar, R. H. Sajedi, J. Jalali and M. Tabari. 2010. Biochemical characterization of midgut, salivary glands and haemolymph α-amylases of Naranga aenescens. Bulletin of Insectology, 63: 175-181.

Azevedo, T. R., W. R. Terra and C. Ferreira. 2003. Purification and characterization of three beta-glycosidases from midgut of the sugar cane borer, Diatraea saccharalis. Insect Biochemistry and Molecular Biology, 33: 81-92.

Azuma, J., K. Nishimoto and T. Koshijima. 1984. Studies on digestive system of termites: II. Properties of carbohydrolases of termite Coptotermes formosanus SHIRAKI. Wood Research, 70: 1-16.

Bandani, A. R., M. Kazzazi and M. Allahyari. 2010. Gut pH, and isolation and characterization of digestive α-D-glucosidase of Sunn pest. Journal of Agricultural Science and Technology, 12: 265-274.

Baker, J. E. 1991. Purification and partial characterization of α-Amylase allozymes from the lesser grain borer, Rhyzopertha dominica. Insect Biochemistry, 21: 303-311.

Baker, J. E. and S. M. WOO. 1985. Purification, partial characterization, and postembryonic levels of amylases from Sitophilus oryzae and Sitophilus granarius. Archives of Insect Biochemistry and Physiology, 2: 415-128.

Bezerra, C. A., L. L. P. Macedo, T. M. L. Amorim, V. O. Santos, R. R. Fragoso, W. A. Lucena, A. M. Meneguim, A. Valencia-Jimenez, G. Engler, M. C. M. Silva, E. V. S. Albuquerque, M. F. Grossi-de-Sa. 2014. Molecular cloning and characterization of an α-amylase cDNA highly expressed in major feeding stages of the coffee berry borer. Gene, 553, 7-16.

Binaté, S., D. N’Dri, M. Toka and L.P.Kouamé. 2008. Purification and characterization of two beta-glucosidases from termite workers Macrotermes bellicosus (Termitidae: Macrotermitinae). Journal of Applied Biosciences, 10: 461-470.

Blei, H. S., S. Dabonné, Y. R. Soro and L.P. KOUAME. 2011. Purification and characterization of an endo-beta-D-xylanase from major soldier salivary glands of the termite Macrotermes subhyalinus with dual activity against carboxymethylcellulose. Journal of Entomology and Nematology, 3: 1-13.

Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, M. Hernandez, M. Keller, K. Li, N. Palackal, A. Sittenfeld, G. Tamayo, S. Wells, G. P. Hazlewood, E. .J. Mathur, J. M. Short, D. E. Robertson and B. A. Steer. 2004. Unusual Microbial Xylanases from Insect Guts. Applied and Environmental Microbiology, 70: 3609-3617.

Buonocore, V., E. Poerio, V. Silvano and M. Tomasi. 1976. Physical and catalytic properties of α-amylase from Tenebrio molitor L. larvae. Biochemical Journal, 153: 621-625.

Chararas, C., R. Eberhard, J. E. Courtois and F. Petek. 1983. Purification of three cellulases from the xylophagous larvae of Ergates faber (Coleoptera: Cerambycidae). Insect Biochemistry, 13: 213-218.

Chitgar, M. G., S. M. Ahsaei, M. Ghadamyari, M. Sharifi, V. H. Naveh and H. Sheikhnejad. 2013. Biochemical characterization of digestive carbohydrases in the rose sawfly, Arge rosae Linnaeus (Hymenoptera: Argidae). Journal of Crop Protection, 2: 305-318.

Cinco-Moroyoqui, F. J., F. I. Diaz-Malvaez., A. Alanis-Villa., J. M. Baron-HoyoS, J. L Cardenas-Lopez., M. O. Cortez-Rocha and F. J. WONG-CORRAL. 2008. Isolation and partial characterization of three isoamylases of Rhyzopertha dominca F. (Coleoptera: Bostrichidae). Comparative Biochemistry and Physiology, 150B: 153-160.

Cohen, A .C. and D. L. Hendrix. 1994. Demonstration and preliminary characterization of α-amylase in the sweet potato whitefly, Bemisia tabaci (Aleyrodidae: Homoptera). Camparative Biochemistry and Physiology, 109B: 593-601.

Commin, C., M. Aumont-Nicaise, G. Claisse, G. Feller and J-L. Da Lage. 2013. Enzymatic characterization of recombinant α-amylase in the Drosophila melanogaster species subgroup: is there an effect of specialization on digestive enzyme? Genes and Genetic Systems, 88: 251-259.

Cristofoletti, P. T., A. F. Ribeiro, C. Deraison, Y. Rahbe and W. R. Terra. 2003. Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. Journal of Insect Physiology, 49: 11-24.

Darvishzadeh, A. and A. R. Bandani. 2012. Identification and characterization of Alpha-amylase in the rose aphid, Macrosiphum rosae (Linnaeus, 1758) (Hemiptera: Aphididae). Munis Zoology and Entomology, 7(2): 1089-1096.

Darvishzadeh, A., V. Hosseininaveh and M. Ghamari. 2013. Identification and biochemical characterisation of α-amylase in the alimentary tract of Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Archives of Phytopathology and Plant Protection, 46: 1061-1069.

Dehghanikhah F., M. Kazzazi, H. MADADI and V. Hosseini Naveh. 2014. Biochemical characterization of digestive β-glucosidase from midgut of Colorado potato beetle. Journal of Crop Protection, 3: 181-189.

Delkash-Roudsari, S., A. Zibaee, Z. Bigham and M. Fazeli-Dinan. 2014. Effect of hexaflumuron on intermediary metabolism of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Plant Pests Research, 3(4): 41-52.

Dojnov, B., N. Bozic, V. Nenadovic, J. Ivanovic and J. Vujcic. 2008. Purification and properties of midgut amylase isolated from Morimus funereus (Coleoptera: Cerambycidae). Comparative Biochemistry and Physiolology, 149B: 153-160.

Dué, A. E., J.P.E.N. Kouadio, H. T. Kouakou, S. Dabonné, S. L. Niamké and L.P. Kouamé. 2008. Purification and physicochemical properties of alpha-amylase from cockroach, Periplaneta americana (Linnaeus), for starches saccharification. African Journal of Biotechnolology, 7: 2707-2716.

Fagbohoun, J. B., Y. Karamoko Y., S. Dabonné, E. J. P. Kouadio, E. A. Dué and L. P. Kouamé. 2012. Characterization of the dual activity of an endo-beta-D-glycosidase from salivary glands of Macrotermes subhyalinus little soldier against carboxymethylcellulose and xylan. International Journal of Biomolecules and Biomedicine, 2: 8-14.

Faulet, M., B., S. Niamké., T. J. Gonnety and L. P. Kouamé. 2006a: Purification and biochemical properties of a new thermostable xylanase from symbiotic fungus Termitomyces sp. African Journal of Biotechnology, 5: 273-283.

Faulet, M. B., S. Niamké., T. J. Gonnety and L. P. Kouamé. 2006b. Purification and biochemical characteristics of a new strictly specific endoxylanase from termite Macrotermes subhyalinus workers. Bulletin of Insectology, 59: 17-26.

Ferreira A.H., Ribeiro A.F., Terra W.R. and Ferreira C. 2002. Secretion of β-glycosidase by middle midgut cells and its recycling in the midgut of Tenebrio molitor larvae. Journal of Insect Physiology, 48: 113-118.

Ferreira, C. and W. R. Terra. 1983. Physical and kinetic properties of a plasma-membrane-bound β-Dglucosidase (cellobiase) from midgut cells of an insect (Rhynchosciara americana larva). Biochemical Journal, 213: 43-51.

Fonseca, F. V., J. R. Silva, R. L. Samuels, R. A. DaMatta, W. R. Terra and C. P. Silva. 2010. Purification and partial characterization of a midgut membrane-bound α-glucosidase from Quesada gigas (Hemiptera: Cicadidae). Comparative, Biochemistry and Physiology, 155B: 20-25.

Franzi, S., I. Ackermann and A. Nahrtedt. 1989. Purification and characterization of a β-glucosidase (linamarase) from the haemolymph of Zygaena trifolii Esper, 1783 (Insecta, Lepidoptera). Experientia, 45: 712-718.

Ghadamyari M., V. Hosseininaveh and M. Sharifi. 2010. Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep: Pyralidae). Comptes Rendus Biologies, 333: 97-204.

Haloi, D. J., A. Borkotoki and R. Mahanta. 2011. Comparative study of cellulase activity in Periplaneta americana, Odontotermes obesus and Philosamia ricini. World Journal of Life Sciences and Medical Research, 1:112.

Heo, S., J. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin and H. Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. Journal of Microbiology and Biotechnology, 16: 1753-1759.

Hirayama, K., H. Watanabe, G. Tokuda, K. Kitamoto and M. Arioka. 2010. Purification and characterization of termite endogenous β-1,4-endoglucanases produced in Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 74: 1680-1686.

Huang, S., P. Sheng and H. Zhang. 2012. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). International Journal of Molecular Sciences, 13: 2563-2577.

Hubert; J., V. Šustr and J. SMRŽ. 1999. Feeding of the oribatid mite Scheloribates laevigatus (Acari: Oribatida) in laboratory experiments. Pedobiologia, 43: 328-339.

Kaewmuangmoon, J., M. Yoshiyama, K. Kimura, M. Okuyama, H Mori., A. Kimura and C. Chanchao. 2012. Characterization of some enzymatic properties of recombinant - glucosidase III from the Thai honeybee, Apis cerana indica Fabricus. African Journal of Biotechnology, 11: 16220-16232.

Kim, N., Y. M. Choo, K. S. Lee, S .J. Hong, K. Y. Seol, Y. H. Je, H. D. SOHN and B. R. Jin. 2008. Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comparative Biochemistry and Physiology, 150B: 368-376.

Kouadio, E. J. P., E. A. Dué, O. A. Etchian, J. Shaw and L.P. Kouamé. 2010. Purification and characterization of two dimeric α-amylases from digestive tract in the tropical house cricket Gryllodes sigillatus (Orthoptera: Gryllidae). Australian Journal of Basic and Applied Sciences, 4: 5241-5252.

Kouadio, E. J. P., H.K. Konan, F .A. Tetchi, K. D. Brou and L. P. Kouamé. 2012. Novel α-Amylases Amy A1 and Amy A2 from digestive tract of tropical house cricket Gryllodes sigillatus (Orthoptera: Gryllidae): hydrolysis and transglycosylation reactions. Agriculture and Biology Journal of North America, 3: 198-207.

Kouamé, L. P., A .E. Dué, S. L. Niamké., A. F. Kouamé and A. Kamenan. 2005a. Synthèses enzymatiques de néoglucoconjugués catalysées par l’alpha-glucosidase purifiée de la blatte Periplaneta americana (Linnaeus). Biotechnologie, Agronomie, Société et Environnement, 9: 35-42.

Kouamé, L. P., A. F. Kouamé., S. L. Niamké., M. B. Faulet and A. Kamenan. 2005b. Biochemical and catalytic properties of two β-glycosidases purified from workers of the termite Macrotermes subhyalinus (Isoptera: Termitidea). International Journal of Tropical Insect Science, 25: 103-113.

Kouamé, L. P., S. Niamké, J. Diopoh and B. Colas. 2001: Transglycosylation reactions by exoglycosidases from the termite Macrotermes subhyalinus. Biotechnology Letters 23: 1575-1581.

Krishna, K. 1969. Introduction, pp. 1-13. In: Biology of termites, Vol. 1 (KRISHNA K., WEESNER F. K., Ed.).- Academic Press, New York, USA.

Liu, N., X. Yan, M. Zhang, L. Xie, Q. Wang, Y. Huang, X. Zhou, S. Wang and Z. Zhou. 2011. Microbiome of fungus-growing termites: a new reservoir for lignocellulase Genes. Applied and Environmental Microbiology, 77: 48-56.

Marana, S. R., W. R. Terra and C. Ferreira. 2000. Purification and properties of a beta-glycosidase purified from midgut cells of Spodoptera frugiperda (Lepidoptera) larvae. Insect Biochemistry and Molecular Biology, 30: 1139-1146.

Martin, M. M. 1983. Cellulose digestion in insects. Comparative Biochemistry and Physiology, 75A: 313-324.

Martin, M. M. and J. S. Martin. 1979. The distribution and origins of the cellulolytic enzymes of the higher termite Mucrorerrnes narulensis. Physiological Zoology. 52: 1-11.

Mattéotti, C., J. Bauwens, C. Brasseur, C. Tarayre, P. Thonart, J. Destain, F. Francis, E. Haubruge, E. De Pauw, D. Portetelle, and M. Vandenbol. 2012. Identification and characterization of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expression and Purification, 83: 117-127.

Mattéott, C., E. Haubruge, P. Thonart, F. Francis, E. De Pauw, D. Portetelle and M. Vandenbol. 2011. Characterization ofa new β-glucosidase/β-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiology Letters 314: 147-157.

Matoub, M. and C. Rouland. 1995. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comarative Biochemistry and Physiology, 112B: 629-6345.

Mehrabadi, M., A. R. Bandani, F. Saadat and S. RAVAN. 2000. Sunn pest, Eurygaster integriceps Putton (Hemiptera: Scutelleridae), digestive α-amylase, α-glucosidase and β-glucosidase. Journal of Asia-Pacific Entomology, 12: 79-83.

Memarizadeh, N., P. Zamani, R. H. Sajedi and M. Ghadamyari. 2014. Purification and Characterization of Midgut α-Glucosidase from Larvae of the Rice Green Caterpillar, Naranga aenescens Moore. Journal of Agricultural Science and Technology, 16: 1229-1240.

Mendiola-Olaya, E., A., Valencia-Jimenez, S. Valdes-Rodriguez, J. Delano-Frier and A. Branco-Labra. 2000. Digestive amylase from the larger grain borer, Prostephanus truncatus Horn. Comparative Biochemistry and Physiology, 126B: 425-433.

Nagaraju, J., and E.G Abraham. 1995: Purification and characterization of digestive amylase from tasar silkworm, Antheraea myllita (Lepidoptera: Saturniidae). Comparative Biochemistry and Physiology, 110B: 201-209.

Nakashima, K., H. Watanabe, H. Saitoh, G. Tokuda and J. I. AZUMA. 2002. Dual cellulose digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochemistry and Molecular Biology, 32: 777-784.

Ni, J. and G. Tokuda. 2013. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 31: 838-850.

Ni, J., G. Tokuda, M. Takehara and H. Watanabe. 2007: Heterologous expression and enzymatic characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis. Applied Entomology and Zoology. 42: 457-463.

Nishimoto, M., M. Kubota, M. Tsuji, H. Mori, A. Kimura, H. Matsui and S. Chiba 2001: Purification and substrate specificity of honeybee, Apis mellifera L., α-gluosidase III. Bioscience, Biotechnology, and Biochemistry, 65: 1610-1616.

Omotoso, O. T. and C. O. Adedire. 2011. Amylase activity in the midgut homogenate of the palm weevil, Rhynchophorus phoenicis F. (Coleoptera: Curculionidae). Journal of Agricultural and Biological Science, 2: 014-017.

Oppert, C., W. E. Klingeman, J. D. Willis, B. Oppert and J. L. Jurat-Fuentes. 2010. Prospecting for cellulolytic activity in insect digestive fluids. Comparative Biochemistry and Physiology, 155B: 145-154.

Oyebanji, O., O. Soyelu, A. Bamigbade,, and R. Okonji. 2014. Distribution of digestive enzymes in the gut of American cockroach, Periplaneta americana (L.). International Journal of Scientific and Research Publications, 4(1): 1-5.

Padilla-Hurtado, B., C. Florez-Ramos, C. Aguilera-Galvez, J. Medina-Olaya, A. Ramírez-Sanjuan, J. Rubio-Gómez and R. Rubio-Gómez. 2012. Cloning and expression of an endo-1,4-β-xylanase from the coffee berry borer, Hypothenemus hampei. BMC Research Notes, 5: 23.

Pelegrini; P. B., A.M .Murad, M. F. Grossi-de-Sá, L. V. Mello, L .A. S. Romeiro, E.F.Noronha, R. A. Caldas and O. L. Franco .2006: Structure and enzyme properties of Zabrotes subfasciatus α-amylase. Archives of Insect Biochemistry and Physiology, 61: 77-86.

Penzlin, H. 1999. Neuropeptide und die Steuerung visceraler Funktionen bei Insekten. Leopoldina, 44: 411-26.

Podoler, H. and S. W. Applebaum. 1971. The α-amylase of the beetle Callosobruchus chinensis properties. Biochemical Journal, 121: 321-325.

Pontoh, J. and N.H. Low. 2002. Purification and characterization of beta-glucosidase from honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 32: 679-690.

Priya, S., N. Kaur and A.K. Gupta. 2010. Purification, characterization and inhibition studies of α-amylase of Rhyzopertha dominica. Pesticide Biochemistry and Physiology, 98: 231-237.

Pytelkova, J., J. Hubert, M. Lepsik, J. Sobotnik, R. Sindelka, I. Krizkova, M. Horn and M. Mares. 2009. Digestive alpha-amylases of the flour moth Ephestia kuehniella–adaptation to alkaline environment and plant inhibitors. FEBS Journal, 276: 3531-3546.

RatnadewI, A. A. I., W. Handayani and N. N. T. Puspaningsih. 2007. Production and characterization of enzyme β-endoxylanase from bacteria of termite-intestinal system. Jurnal Ilmu Dasar, 8: 110-117.

Rehman, F. U., M. Aslam, M. I. Tariq, A. Shaheen, A. J. Sami, N .H. Naveed and A. I. Batool 2009. Isolation of cellulolytic activities from Tribolium castaneum (red flour beetle). African Journal of Biotechnology, 8: 6710-6715.

RIseh, N. S., M. Ghadamyari and B. Motamediniya. 2012. Biochemical characterization of α and β-glucosidases and α and β-galactosidases from red palm weevil, Rhynchophorus ferrugineus Olivieri (Col.: Curculionidae). Plant Protection Science, 2: 85-93.

Rouland, C., A. CivaS, J. Renoux, and F. Petex. 1988. Purification and properties of cellulases from termite Macrotermes Mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comparative Biochemistry and Physiology, 91B: 449-458.

Roy, N., M.M. Rana, and A.T.M.S. Uddin. 2004. Isolation and some properties from new xylanase from the intestine of a herbivorous insect (Samia cynthia pryeri). Journal of Biological Sciences, 4: 27-33.

Ruppert, E.E., R.S Fox, and R.D. Barnes. 2004. Invertebrate zoology, a functional Evolutionary approach. Seventh edition, Thomson, 963 p.

Sajjadian, S. M., V. Hosseininaveh and M. Vatanparast. 2012. Cellulase activity in the larval digestive tract of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae). Journal of Crop Protection, 1: 201-210.

Sami, A. J., M. A. Anwar, F. U. Rehman and A. R. Shakoori. 2011. Digestive cellulose hydrolyzing enzyme activity (endo- β–1, 4- D-glucanase) in the gut and salivary glands of blister beetle, Mylabris pustulata. Pakistan journal of zoology, 4: 393-401.

Sami, A. J, T. Farhana and A. R. Shakoori. 2010. Biodegradation of cellulose and xylan by a paddy pest, Oxya chinensis. Annals of Biological Research, 1(3): 1-12.

Sami, A. J. and A. R. Shakoori. 2008. Biochemical characterization of endo-1,4-β-D-glucanase activity of a green insect pest Aulacophora foveicollis (Lucas). Life Science Journal, 5: 30-36.

Santos, C. D. and W. R. Terra. 1985. Physical properties substrate specificities and a probable mechanism for a β-D-glucosidase (cellobiase) from midgut cells of the cassava hornworm Erinnyis ello. Biochimica et Biophysica Acta, 831: 179–185.

Séa, T. B., S. J. Saki, A. Coulybaly, A. F. Yeboua and K. J. Diopoh. 2006. Extraction, purification et caractérisation de deux cellulases du termite Macrotermes subhyalinus (Termitidae). Agronomie Africaine, 10: 57-65.

Sharifi, M., M. Ghadamyari, M. M. Moghadam and F. Saiidi. 2011. Biochemical characterization of digestive carbohydrases from Xanthogaleruca luteola and inhibition of its α-amylase by inhibitors extracted from the common bean. Archives of Biological Sciences Belgrade, 63: 705-716.

Sheng, P., J. Xu, G. Saccone, K. Li and H. Zhang 2014. Discovery and characterization of endo-xylanase and β-xylosidase from a highly xylanolytic bacterium in the hindgut of Holotrichia parallela larvae. Journal of Molecular Catalysis B: Enzymatic, 105: 33-40.

Sorkhabi-Abdolmaleki S., A. Zibaee, H. Hoda and M. FAZELI-DINAN. 2014. Purification and characterization of midgut α-amylase in a predatory bug, Andralus spinidens. Journal of Insect Science, 14: 65.

Su, L-J., H-F. Zhang, X.-M. Yin, M. Chen, F.-Q. WANG, H. Xie, G-Z. Zhang and A-D. Song. 2013. Evaluation of cellulolytic activity in insect digestive fluids. Genetics and Molecular Research, 12: 2432-2441.

Sugimura, M., H. Watanabe, N. Lo and H. Saito. 2003. Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. European Journal of Biochemistry, 270: 3455-3460.

Sun, J-Z. and M. E. Scharf. 2010. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 17: 163-165.

Takewaki, S., S. Chiba, A. Kimura, H. Matsui and Y. KOIKE. 1980. Purification and properties of a-glucosidases of the honeybee Apis mellifera L. Agricultural and Biological Chemistry, 44: 731-740.

Tanamura, T., K. Kitamura, T. Fukuda and T. Kikuchi. 1979. Purification and partial characterization of three forms of alpha-glucosidase from the fruit fly Drosophila melanogaster. Journal of Biochemistry, 85: 123-130.

Tierno de Figueroa, J.M., C.E. Trenzado, M.J. López-Rodríguez, and A. Sanz. 2011. Digestive enzyme activity of two stonefly species (Insecta, Plecoptera) and their feeding habits. Comparative Biochemistry and Physiology, 160A: 426-30.

Tokuda, G., H. Watanabe, T. Matsumoto, and H. NODA. 1997. Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-beta-1,4-glucanase. Zoological Science, 14: 83-93.

Torres, J.B. and D.W. BOYD. 2009. Zoophytophagy in predatory Hemiptera. Brazilian Archives of Biology and Technology, 52: 1199-1208.

Uchima, C. A., G. Tokuda, H. Watanabe, K. Kitamoto and M. Arioka. 2012. Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant β-glucosidase from the termite Nasutitermes takasagoensis. Applied and Environmental Microbiology, 78: 4288-4293.

Uddin, M. M., M. M. H. Chowdhury, S. Mojumder and D. Sikdar. 2012. Multiple endo-β-1,4-glucanases present in the fluid of a defoliating beetle, Podontia quatuordecimpunctata (Coleoptera: Chrysomelidae). Pakistan Journal of Biological Sciences, 15: 333-340.

Upadhyaya, S. K., A. Manandhar, H. Mainali, A. R. Pokhrel, A. Rijal, B. Pradhan and B. Koirala. 2012. Isolation and characterization of cellulolytic bacteria from gut of termite. Rentech Symposium Compendium 1: 14-18.

Vilanova, C., G. Marco, L. Dominguez-Escriba, S. Genoves, V. Sentandreu, E. Bataller, D. Ramon and M. Porcar. 2012. Bacteria from acidic to strongly alkaline insect midguts: Potential sources of extreme cellulolytic enzymes. Biomass and Bioenergy, 45: 288-294.

Watanabe, H. and G. Tokuda. 2010. Cellulolytic systems in insects. Annual Review of Entomology, 55: 609-632.

Willis, J. D., B. Oppert, C. Oppert, W. E Klingeman and J. L Jurat-Fuentes. 2011. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Insect Physiology, 57: 300-306.

Wisessing, A, A. Engkagul, A. Wongpiyasatid and K. Chuwongkomon. 2008. Purification and Characterization of C. maculatus α-amylase. Kasetsart Journal (Natural Science), 42: 240-244.

Wongchawalit, J., T. Yamanoto, H. Nakai, Y.-M. Kim, N. Sato, M. Nishimoto, M .Okuyama., H. Mori, O. Saji, C. Chanchao, S. WongsirI, R. Surarit, J. SvastI, S..Chiba and A. Kimura. 2006. Purification and characterization of α-glucosidase I from Japanese honeybee (Apis cerana japonica) and molecular cloning of its cDNA. Bioscience, Biotechnololy, and Biochemistry, 70: 2889-2898.

Xu, W., Q. Huang, X. Wu, X. Yu, X. Wang and L.Tao. 2014. Property of midgut α-amylase from Mythimna separata (Lepidoptera: Noctuidae) larvae and its responses to potential inhibitors in vitro. Journal of Insect Science, 14: 282.

Xue, Y.-P., J.-Q. Jin, Z.-Q. Liu, J.-F. Zhang and Y.-G Zheng. 2008. Purification and characterization of β-glucosidase from Reticulitermes flaviceps and its inhibition by valienamine and validamine. African Journal Biotechnology, 7: 4595-4601.

Yang, T., J. Mo and J. Cheng. 2004: Purification and some properties of cellulase from Odontotermes formosanus (Isoptera: Termitidae). Entomologia Sinica, 11: 1-10.

Yapi, D. Y. A., K. H. Konan, S. Binaté, E. J. P. Kouadio and L. P. Kouamé. 2015. Purification and biochemical characterization of a specific alpha-glucosidase from the digestive fluid of larvae of the palm weevil, Rhynchophorus palmarum L. International Journal of Bioscienes, 7(1): 74-85.

Yapi, D. Y. A., D. Gnakri, S. Niamke, and L. P. Kouamé. 2009. Purification and biochemical characterization of a specific β-glucosidase from the digestive fluid of larvae of the palm weevil, Rhynchophorus palmarum. Journal of Insect Science, 9: 4.

Zeng, F., and A. C. Cohen. 2000a: Comparison of amylase and protease activities of a zoophytophagous and two phytozoophagous Heteroptera. Compative Biochemistry and Physiology, 126A: 101-106.

Zeng, F., and A .C. Cohen. 2000b. Partial characterization of alpha amylase in the salivary glands of Lygus Hesperus and L. lineolaris. Compative Biochemistry and Physiology, 126B: 9-16.

Zhang D., A. B. Allen and A. R. Lax. 2012: Functional analyses of the digestive β- glucosidase of Formosan subterranean termites (Coptotermes formosanus). Journal of Insect Physiology, 58: 205-210.

Zhang, D., A. R. LAX, J. M. Bland and A. B. Allen. 2011. Characterization of a new endogenous endo-β-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus). Insect Biochemistry and Molecular Biology, 4: 211-218.

Zhang, D., A. R. Lax, A. K. Raina and J. M. Bland. 2009. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochemistry and Molecular Biology, 39: 516-522.

Zhou, X., M. M. Wheeler, F. M. Oi and M. E. Scharf. 2008. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38: 805-815.

Zibaee, A., H. Hoda and M. Fazeli-Dinan. 2012. Purification and biochemical properties of a salivary α-amylase in Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). Invertebrate Survival Journal (ISJ), 9: 48-57.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 International Journal of Entomological Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Entomological Research
ISSN: 2310-3906 (Online), 2310-5119 (Print).
© EScience Press. All Rights Reserved.