zainal arifin, Zulkifli Dahlan, Sabaruddin Sabaruddin, Chandra Irsan, Yusuf Hartono


Study aimed to determine the diversity and the role of symbiont bacteria found in the digestive tract of termites and symbiont fungus grown in the termite nest. Location of research is a rubber plantation which is located about 60 km from the city of Palembang, and 20 km from the district capital Ogan Ilir regency, Inderalaya. Area of the garden is about 2 hectares. In the land of rubber plantation was discovered many termite nests. Symbionts bacteria were identified with the test of characteristics and biochemical activities of bacteria, by using the key books of Bergey's Manual of Determinative Bacteriology. Identification of fungus was done by matching the characteristics of the fungus obtained from observations with identification book Compendium of Soil Fungi. M. gilvus was symbiosized with 3 species of bacteria that live in their digestive tracts, two species were found in the midgut, identified as; E. agglomerans and S. hominis.  One species of bacteria was found in the hindgut, identified as P. paucimobilis. On the "fungus comb" inside nest of M. gilvus discovered two species of fungi which were identified as Trichoderma sp. and Mucor sp.


Macrotermes gilvus, Symbiont, E. agglomerans, S. hominis, P. paucimobilis, Trichoderma sp., Mucor sp

Full Text:



Aanen, D.K., P. Eggleton and C. Rouland-Lefèvre. 2002. The evolution of fungus growing Termite sand their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99: 14887–14892.

Ackerman and L. Lice. 2009. Termite (Insecta: Isoptera) Species Coposition in a primary Rain Forest and Agroforests in Central Amazonia. Biotropica. 41 (2): 226 – 233.

Arifin, Z., Z. Dahlan, Sabaruddin, C. Irsan and Y. Hartono. 2014. Characteristics, Morphometry and Spatial Distribution of Population of Subterranean Termaites Macrotermes gilvus. Hagen. (Isopter: Termitidae) in Rubber Plantation Land Habitat Which Managed Without Pesticides and Chemical Fertilizers. International Journal of Science and Research (IJRS) ISSN (Online):2319-7064.

Beji A., J. Mergaert, F. Gavini, D. Izard, K. Kersters, H. Leclerc and J. De Ley. 1988. Subjective synonymy of Erwinia herbicola, Erwinia milletiae and Enterobacter agglomerans and redefinition of the taxon by genotypic and phenotypic data. Int. J. Syst. Bacteriol. 38, 77-88.

Breznak, J. A. 2002. “Phylogenetic Diversity and Physiology of Termite Gut Spirochetes.” Integ. and Comp. Biol., 42:313-318.

Brune, Andreas. 2000. “Microecology of the termite gut: structure and function on a Microscale.” Current Opinion in Microbiology 3:263-269.

Bignell D. E. and P. Eggleton. 1995. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Ins Soc 42:57–69.

Bignell, D. E. 2000. Introduction to symbiosis. In: Abe T, Bignell D. E., Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208.

Breznak, J. A. 2002. “Phylogenetic Diversity and Physiology of Termite Gut Spirochetes.” Integ. and Comp. Biol., 42:313-318.

Brune A. and M. Kühl. 1996. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J. Insect Physiol 42: 1121–1 127.

Collins, N. M. 1983. The utilisation of nitrogen resources by termites (Isoptera). In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an ecological factor. Blackwell, Oxford, pp 381 – 412.

Darlington, J. P. E. C. 1994. Nutrition and evolution in fungus-grow-ing termites. In: Hunt, J. H., Nalepa, C. A. (Eds.), Nourishment and Evolution in Insect Societies. West-view Press, Boulder, CO: 105-130.

Domsch, K. H., W. Gams, T. H. Anderson. 1980. Compendium of Soil Fungi. Volume 1. Academic Press. London.

Eutick, M. I., R. W. O’Brien and M. Slaytor. 1978. Bacteria from the gut of Australian termites. Appll. and Environ. Microbiol. 35 (5): 823-828.

Gandjar, I. and W. dan Sjamsuridzal. 2006. Mikologi Dasar dan Terapan. Yayasan Obor Indonesia, Jakarta.

Harman, G. E. 2007. Trichoderma sp., including T. harzianum, T. viride, T. koningii, T. hamatum and other spp. Deuteromycetes, Moniliales (asexual classification system) (Ascomycetes, Hypocreales, usually Hypocrea spp., are sexual anamorphs, this life stage is lacking or unknown for biocontrol strains) Cornell University, Geneva, NY 14456 (www.doctorfungus.org/Thefungi/Tichoderma php. diakses 28 Mei 2014).

He, S. 2013. Comparative Metagenomic and Metatranscriptomic Analysis of hindgut Paunch Microbiota in Wood and dung Feeding Higher Termite. Plos One, 8 (4): E61126.

Hongoh, Y. 2011. Toward The Functional of uncultivable, symbiotic organism in the Termite gut. Springer lingk 68: 1311-1325.

Higashi, M. and T. Abe. 1997. Global diversification of termites driven by the evolution of symbiosis and sociality. In: Abe, T., Levin, S.A., Higashi, M. (Eds.), Biodiversity: an Ecological Perspective. Springer-Verlag, NY: 83-112.

Hemachandra, I. I., J. P. Edirisinghe, W. A. I. P. Karunaratne and C. V. S. Gunatilleke. 2010. Distinctiveness of termite assemblages in two Fragmented Forest types in Hatane Hills in The Kandy district of Srilanka.Cey.J. Sci. (Bio Scie ). 39 (1) 11 – 19.

Hyodo, F., T. Inoue and J. I. Azuma. 2000. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658.

Hyodo. F., I. Tayasu and T. Inoue. 2003. Differential role of symbiotic fungi in lignin degrada-tion and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193.

Jones, T. David and P. Eggleton. 2000. Sampling termite assemblages in tropical forest: testing a rapid biodiversity assessment protocol. Journal of applied Ecology 37: 191-303.

John, G.H., R. K. Noel, H. A. S. Peter, T. S. James and T. W. Stanly.1999. Bergey’s Manual of Determinative Bacteriology. USA. Williams and Wilkins.

Kappler, A. 1999. “Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites.” Applied Soil Ecology 13:3.

Kirk,P.M., P. F. Cannon, D. J. David and J. A. Stalper. 2001. Ainsworth & Bigby,s Dictonary of Fungi. CAB. International, Wallingford.

Kirk, T.K. and H. M. Chang. 1981. Potential applications of bio-ligni-nolytic systems. Enzyme Microbiology and Technology 3, 189- 196.

König H., J. Fröhlich and H. Hertel. 2006. Diversity and lignocellulolytic activities of cultured microorgansims. In: König. H., Varma, A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin: 271–301.

Korb, J. and D. K. Aanen. 2003. The evolution of uniparental transmission of fungal symbi onts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65–7 1.

Lee, K.E. and T. G. Wood.1971a. Termites and soils. Academic Press, New York, London.

Matsumoto, T. 1976. The role of termites in an equatorial rain for¬est ecosystem of West Malaysia. I. Population density, biomass, carbon, nitrogen and calorific content and respiration rate. Oecologia 22: 153-178.

Micheli. 2007. Mucor spp. www.doctorfungus.org/Thefungi/Mucor php. diakses 28 Mei 2014.

Noirot, C. 1970. The Nests of Termites. In: Krishna, K., Weesner, F.M. (eds) Biology of Termites, Vol. 2. Academic Press, New York: 73-120.

Noirot C. and J. P. E. C. Darlington. 2000. Termite nests: architecture, regulation and defence. In: Abe T, Bignell D.E., Higashi M (eds) Termites: evolution, sociality, symbioses, ecology.Kluwer Academic Publishers, Dordrecht, pp 121–139.

Ohkuma, M. 2003. Termite symbiotic systems: efficient bio-recycing of lignocellulose. Appl. Microbiol Biotechnol 61:1–9.

Purwantisari, S. and R. B. dan Hastuti. 1999. Isolasi dan Identifikasi Jamur Indigenous Rhizosfer Tanaman Kentang dari Lahan Pertanian Kentang Organik di Desa Pakis, Magelang. BIOMA, Desember 2009 Vol. 11, No. 2 : 45-53.

Rohrmann, G.F. 1978. The origin, structure and nutritional import-ance of the comb in two species of Macrotermitinae (Insecta, Isoptera). Pedobiologia 18, 89-98.

Rouland-Lefèvre, C., T. Inoue and T. Johjima. 2006. Termitomyces/termite interactions. In: König, H, Varma, A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin: 335–350.

Sigit, S.H. 2006. Hama Permukiman Indonesia (Pengenalan, Biologi dan Pengendalian). Unit Kajian Pengendalian Hama Pemukiman. Fakultas Kedokteran Hewan, Institut Pertanian Bogor, Bogor.

Sieber, R. and R. H. Leuthold. 1981. Behavioural elements and their meaning in incipient laboratory colonies of the fungus-growing termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Sociaux 28: 371-382.

Setianegoro, T.A. 2004. Kajian in vitro efek mikroba rayap dalam mendegradasi pakan sumber serat. Skripsi. Fakultas Peternakan. Institut Pertanian Bogor, Bogor.

Tokuda, G., N. Lo and H. Watanabe. 2004. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228.

Tokuda, G., H. Watanabe, M. Hojo, A. Fujita, H. Makiya, M. Miyagi, G. Arakawa and M. Arioka. 2012. Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis. J. Insect Physio. 58: 147-154.

Tokuda, G., N. Lo and H. Watanabe. 2005. Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol Entomol 30:372–380.

Wood, T.G. and W. A. Sands. 1978. The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, UK: 245–292.


  • There are currently no refbacks.

Copyright (c) 2019 International Journal of Entomological Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Entomological Research
ISSN: 2310-3906 (Online), 2310-5119 (Print).
© EScience Press. All Rights Reserved.